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Abstract

We study the cross-sector allocation of R&D resources in a multisector growth model with

an innovation network, where one sector’s past innovations may bene�t other sectors’ future

innovations. Theoretically, we solve for the optimal allocation of R&D resources. We show

that a planner valuing long-term growth should allocate more R&D toward central sectors in

the innovation network, but the incentive is muted in open economies that bene�t more from

foreign knowledge spillovers. We derive su�cient statistics for evaluating the welfare gains

from improving R&D allocation. Empirically, we build the global innovation network based

on patent citations and establish its empirical relevance for knowledge spillovers. We evaluate

R&D allocative e�ciency across countries using model-based su�cient statistics. Japan has

the highest allocative e�ciency among the advanced economies. For the U.S., improving R&D

allocative e�ciency could generate more than 8% welfare gains.
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1 Introduction

How to foster innovation has long been a central question for economists and policy makers. The

discussion has concentrated on the amount of resources invested in research and development

(R&D) and the cost of under- or over-investment. But how should these R&D resources be allo-

cated across economic sectors or technological �elds? This question is important, policy relevant,

yet understudied, and it is the focus of this paper. We ask: How should innovation resources

be optimally allocated across sectors to take advantage of cross-sector knowledge spillovers and

achieve long-term growth? For example, how many resources should an economy devote to R&D

in semiconductors relative to consumer electronics, or chemistry relative to pharmaceutics? How

should the optimal R&D allocations di�er across countries? How are R&D resources allocated

across sectors in the real world, and how much gain does it create to improve cross-sector R&D

allocative e�ciency?

We answer these questions both theoretically and empirically. The key novelty of our theo-

retical approach is that we introduce a network perspective into modeling the dynamic spillover

structure of innovation. This network captures the notion that one sector’s innovation activities

require researchers and scientists to build on prior discoveries and knowledge, often from outside

their own �elds or sectors—a key feature in the innovation process. We solve for the optimal

cross-sector allocation of R&D resources and derive model-implied su�cient statistics that can

assess the allocative e�ciency of R&D in real-world economies. The model is applied to data

on more than 30 million global patents from all major economies to assess innovation resource

(mis)allocation and potential welfare gains from improving allocative e�ciency.

This research has two key motivations. First, cross-sector R&D allocation is an important

aspect of many R&D policies, ranging from industrial policies that aim to identify and stimulate

a certain set of innovative sectors, to science policy seeking to advance science and harvest long-

term value. Second, the cross-sector innovation spillover structure presents a unique opportunity

to combine classic endogenous growth theory, recent advances in network methods, and detailed

global patent data to answer the research question.

We embed an innovation network into an otherwise canonical multisector endogenous growth

model. A �nite amount of R&D resources (i.e., scientists) may be deployed across sectors to inno-

vate and improve product quality. One sector’s past innovations may subsequently, over a long

time path, bene�t other sectors’ future innovation activities by helping scientists in those sectors

innovate more productively. We de�ne the innovation network as the weighted directed graph

capturing how one sector’s innovation activity bene�ts from another’s past innovation. The state

variables of the economy are sectoral knowledge stocks, which re�ect the accumulation of past

innovations in each sector. Through dynamic spillovers across the network, the state variables
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form a dynamical system, in which the evolution of the knowledge stock in each sector depends

endogenously on the entire history of resource allocation across all sectors of the economy. The

key decision of interest is how to e�ciently allocate R&D resources across sectors in the network.

We begin by modeling a closed economy. Our baseline setup adopts an analytically convenient

formulation—which we relax later—where cross-sector knowledge spillovers form a log-linear dy-

namical system. Despite the complexity of dynamic network spillovers, we are able to explicitly

solve for the optimal path of cross-sector R&D resource allocation under this formulation and

express the closed-form solution in terms of consumer preferences across sectoral products and

sectoral importance in stimulating future innovation through the innovation network. This so-

lution is intuitive; it accounts for: (i) the direct e�ect of R&D on sectoral output, and (ii) indirect

network e�ects on other sectors through R&D spillovers, discounting bene�ts that occur far in the

future. The optimal R&D allocation is also related to the society’s discount rate. A society valuing

long-term growth (i.e., with a low discount rate) should allocate more resources toward sectors

with fundamental technologies that are central in the innovation network, such as semiconduc-

tors. These are technologies that can generate widespread and long-lasting knowledge spillovers

to many other sectors, directly or indirectly. By contrast, a short-termist society should allocate

more R&D resources toward sectors that immediately bene�t consumers but may be peripheral

in the innovation network.

Formally, the contribution of each sector’s R&D to economic growth is captured by the in-

novation network’s eigenvector centrality, which we call “innovation centrality”. We show the

innovation centrality vector coincides with the growth-maximizing R&D allocation along a bal-

anced growth path. The optimal R&D allocation chosen by a benevolent planner can be written

as a weighted average between the innovation centrality vector and the vector representing con-

sumer preferences over di�erent goods. The former represents the planner’s incentives to take

advantage of knowledge spillovers for future growth, and the latter represents the planner’s incen-

tives to expand knowledge in ways that directly bene�t the consumer. A patient planner valuing

long-term growth would place a higher weight on the former.

The model also allows us to quantitatively evaluate the cross-sector allocation of R&D re-

sources in the data and calculate the potential welfare gains from adopting the optimal R&D al-

locations, accounting for transitional dynamics. In consumption-equivalent terms, the welfare

gains are proportional (in logs) to the inner product between the optimal R&D allocation vector

and the log di�erence between the optimal and the actual R&D allocation vectors. Hence, this

inner product—also known as the relative entropy of the actual R&D allocation from the optimal

allocation—is a su�cient statistic to evaluate the potential welfare gains from improving of R&D

allocation. This su�cient statistic can be calculated using data on sectoral production, the inno-

vation network, and real-world R&D resource allocation, allowing us to quantitatively assess the
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R&D allocative e�ciency in the data.

Our baseline results are derived under the tractable formulation where the innovation net-

work is exogenous and invariant to R&D allocations or the levels of knowledge stock, so that the

cross-sector knowledge spillovers form a log-linear dynamical system. Under this formulation, the

optimal R&D allocation is time-invariant and holds along the entire transition path; the su�cient

statistic for the welfare gains from R&D reallocation also accounts for the gains along the transi-

tion path. This tractable benchmark may appear restrictive at �rst, but we show that our analysis

holds beyond the log-linear formulation and is more general. In a richer environment with an en-

dogenous innovation network—where cross-sector spillovers depend on the levels of knowledge

stock and thus past R&D allocations—our welfare su�cient statistic is still valid to �rst-order

around a balanced growth path; formally, it is the directional (Gateaux) derivative of welfare with

respect to the allocation of R&D resources. Hence, even though the optimal R&D allocation is no

longer time-invariant and instead depends on the levels of knowledge stock across sectors, our

su�cient statistic serves as a �rst-order local approximation around a balanced growth path for

the welfare gains from reallocating R&D resources; the welfare impact arising from the endoge-

nous changes in the network (due to departure from log-linearity) is second-order in nature.

We extend our model to incorporate an important source of cross-country heterogeneity:

knowledge spillovers from abroad. As we show, some countries, like the U.S. and Japan, rely

more on domestic knowledge spillovers and less on foreign knowledge spillovers, while other

economies bene�t more from foreign spillovers particularly from the technologically advanced

ones. Intuitively, from the perspective of maximizing domestic welfare, an economy receiv-

ing relatively more spillovers from abroad—and less domestically—should allocate less domes-

tic R&D into the network-central sectors. Similarly, when domestic R&D matters less for long-

run spillovers, a less e�cient domestic R&D allocation is also less consequential for welfare. We

demonstrate these intuitions formally by deriving, in an economy receiving foreign spillovers,

both (1) the unilaterally optimal R&D allocations and (2) the su�cient statistics for the welfare

gains of R&D reallocation.

The tractability of our model lends itself to a large number of theoretical extensions. We

demonstrate that our baseline model, which features a simple production structure, can tractably

incorporate a production network of input-output linkages. We also embed our innovation net-

work formulation into a semi-endogenous growth setting (Jones 1995, Bloom et al. 2020, Jones

2022). We host several other extensions in the Online Appendix.

Our empirical analysis starts by constructing a global innovation network from over 36 mil-

lion patents and their citations, collected from over 40 major patent authorities around the world.

The data, obtained from Google Patents and originally based on the EPO worldwide bibliographic

(DOCDB) data, contain patent-level information on innovations that took place in most economies

3



between 1976 and 2020. We construct the innovation network as a weighted directed graph using

sectors (and country-sectors in our open economy analysis) as nodes and citation shares from

one node to another as the edge. We �nd innovation centrality to be highly heterogeneous across

131 3-digit international technological classes (IPCs). A handful of IPCs—such as medical sci-

ence, computing, and semiconductors—are among the most central in the innovation network.

Countries vary widely regarding reliance on foreign spillovers: 70% of citations made by U.S.

patents are toward other U.S. patents, but most other economies—including China, South Korea,

and Germany—are foreign-reliant, with domestic citation shares well below 50%. Within each

country, the innovation network only weakly correlates with the input-output production net-

work, such that there is substantial independent variation in both network structures.

To provide evidence that a sector’s innovation activities bene�t from past innovation in up-

stream sectors linked through the patent citation network, we extend Acemoglu, Akcigit, and

Kerr (2016)—which analyze the U.S. domestic innovation network—using instrumental variables

(IVs) and to the global setting. The IVs for past innovation are constructed based on time-varying

sectoral exposure to tax-induced user cost of R&D (Wilson, 2009 and Thomson, 2017); they iso-

late comovements in patent output driven by knowledge spillovers and not by common shocks to

connected sectors (Manski, 1993 and Bloom, Schankerman, and Van Reenen, 2013). We �nd evi-

dence for directional knowledge spillovers: each sector’s innovation output responds only to past

upstream innovations and does not respond to past innovation from downstream sectors even

though they are also connected. We also show that relative to input-output linkages, the innova-

tion network is a signi�cantly stronger channel through which knowledge spillovers occur.

Our main empirical application connects the model-implied optimal R&D allocation with

cross-sector R&D allocation in the real world. For each country and time period, we calculate

the unilaterally optimal cross-sector R&D allocation. In the U.S., sectors highly ranked in the op-

timal allocation are primarily those central in the innovation network, such as medical science,

semiconductors, and computing devices. We �nd that the unilaterally optimal allocation di�ers

signi�cantly across countries. For instance, relative to the U.S., Germany and Japan should op-

timally allocate more R&D resources to vehicle-related innovation, whereas South Korea should

invest more R&D in electric communication technique.

The model-implied optimal R&D allocation strongly predicts actual resource allocation in real-

world economies, suggesting that our model provides a reasonable way to understand cross-sector

R&D allocation. Speci�cally, we compare the unilaterally optimal R&D allocation against the

actual R&D allocation captured using both sectoral R&D expenditure shares and patent output

shares in the data. We �nd that, across many countries—especially for the most innovative ones—

sectors that should have more R&D resources do receive more resources.

Nevertheless, the residual misalignment between the optimal and actual allocations translates
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into large potential welfare gains from the reallocation of R&D resources to each country’s own ef-

�cient benchmark. We �nd Japan has the most e�cient R&D allocation. From the R&D allocation

in 2010, adopting the optimal allocation could lead to welfare improvements equivalent to raising

consumption by 5.64% at every point in time for Japan and 8.04% in the U.S., the two economies

that rely the most on domestic knowledge spillovers. Improving R&D allocation could lead to

welfare gain of 5.60% in China, 4.24% in South Korea, and 4.09% in Germany. These economies’

R&D allocations are less e�cient than Japan’s, but their domestic R&D is less welfare consequen-

tial because they bene�t more from foreign spillovers. These cross-country di�erences in R&D

allocative e�ciency are qualitatively stable since the 2000s.

It is important to note that a more allocatively e�cient economy is not necessarily more in-

novative in absolute terms. Instead, our notion of cross-sector allocative e�ciency re�ects the

distance from an economy’s actual R&D allocation in the data to this economy’s own �rst-best,

e�cient benchmark. Also note that, by comparing the R&D allocations in the data to the �rst-

best, our notion of allocative e�ciency does not require that we take a stance on �rms’ equilibrium

conduct; instead, we can directly calculate the welfare impact of reallocating R&D based on the

economic environment. Finally, it is worth emphasizing again that our notion of allocative ef-

�ciency concerns the relative allocation of R&D resources across sectors and not the aggregate

level of R&D.

In the �nal part of the paper, we discuss over- and under-allocated technology classes in the

U.S. Even though providing a full policy recommendation is beyond the paper’s scope, the empir-

ical patterns are nevertheless illuminating and show our model’s potential to analyze and address

more detailed R&D policy issues. For example, our calculation shows that the technology class

most relevant to semiconductor technologies (H01) is under-allocated in the U.S. , providing sup-

port to the recent U.S. initiatives to accelerate and catalyze the domestic semiconductor sector.

We also �nd under-allocation of R&D in technology classes related to “green innovation” such as

waste and pollution management and alternative energy.

This study relates to several strands of existing work. First, our study contributes to a long line

of research on knowledge spillovers and innovation policy (Aghion et al., 2005, Bloom et al., 2013,

Lucking et al., 2018, Bloom et al., 2019, Jones and Summers, forthcoming, Hopenhayn and Squin-

tani, 2021), particularly in the context of endogenous economic growth (Jones and Williams, 1998,

Ngai and Samaniego, 2011, Acemoglu et al., 2018, Akcigit and Kerr, 2018, Atkeson and Burstein,

2019, Garcia-Macia et al., 2019, Bloom et al., 2020, Akcigit et al., 2021, Cai and Tian, 2021, Koenig

et al., forthcoming, Akcigit et al., 2022). We contribute to this literature by tackling a key open

question: how to optimally allocate R&D resources across sectors in the presence of an innovation

network with cross-sector knowledge spillovers.

Relatedly, our study connects to the literature considering cross-sector knowledge linkages,
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including Acemoglu et al. (2016), Cai and Li (2019), and Huang and Zenou (2020), and, in an open

economy setting, Cai et al. (2022) and Guillard et al. (2021); and cross-country knowledge di�u-

sion (Caballero and Ja�e, 1993, Ja�e et al., 1993, Eaton and Kortum, 1999, 2006, Coe and Helpman,

1995, Coe et al., 2009, Santacreu, 2015, Buera and Ober�eld, 2020); see Keller (2004) and Melitz

and Redding (2021) for surveys. We contribute to this literature in three ways: �rst, we build a

new endogenous growth model explicitly considering the dynamic and cross-sector spillovers of

knowledge; second, our tractable formulation enables us to derive the social optimal R&D alloca-

tion and provide simple su�cient statistics for the welfare gains of reallocating R&D optimally,

and we introduce foreign-dependence as an important heterogeneity in our open economy set-

ting; third, we construct a global innovation network using patent data around the world, which

allows us to empirically study the R&D allocative e�ciency in real-world economies.

We also contribute to the fast-growing literature that models network interactions in a gen-

eral equilibrium setting (Carvalho, 2010, Gabaix, 2011, Acemoglu et al., 2012, Jones, 2011, 2013,

Grassi, 2017, Acemoglu et al., 2015, Baqaee, 2018, Lim, 2018, Ober�eld, 2018, Liu, 2019, Baqaee and

Farhi, 2019, 2020, Chaney, 2018, Taschereau-Dumouchel, 2020, Kleinman et al., 2022, vom Lehn

and Winberry, 2022). Particularly related are recent papers that introduce methodologies for dy-

namic network analysis (Liu and Tsyvinski, 2022, Kleinman et al., forthcoming) and studies on

policy interventions targeting speci�c sectors in static production and strategic networks (Liu,

2019, Galeotti et al., 2020). Relative to this literature, our contribution is to embed an innovation

network into a dynamic growth model and study the optimal allocation of R&D resources.

Finally, we contribute to the large literature of resource (mis)allocation (Restuccia and Roger-

son, 2008, Hsieh and Klenow, 2009, Jones, 2013, David and Venkateswaran, 2019, Hsieh et al.,

2019, Liu, 2019, Baqaee and Farhi, 2020). While this literature focuses on the static misallocation

of production resources—potentially due to market distortions, such as taxes, markups and �nan-

cial frictions—and primarily within-sector across �rms, we study the cross-sector allocation of

innovation resources, so our analysis is inherently dynamic in nature. Also note that our alloca-

tive e�ciency measure does not take a stand on �rms’ equilibrium conduct and, instead, directly

calculates the welfare impact of reallocating R&D based on the economic environment.

The rest of the paper is structured as follows. Section 2 has the model and the theoretical

results. Section 3 introduces our data. Section 4 describes the global innovation network and

provides evidence of its relevance for knowledge spillovers. Section 5 hosts our main empirical

application, where we use the model to evaluate cross-sector R&D allocations across countries

and time. Section 6 concludes. A separate Online Appendix contains the derivations of the results

in the paper, theoretical extensions, and supplementary materials on data and empirical results.
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2 Theory: EndogenousGrowthwithAn InnovationNetwork

We study the implication of R&D resource allocation in a multisector endogenous growth model

with an innovation network. We set up the baseline model in Section 2.1 and analyze the optimal

allocation of R&D resources across sectors in Section 2.2. Section 2.3 shows how R&D allocation

a�ects long-run growth along the balance growth path. Section 2.4 shows how reallocating R&D

resources a�ects welfare, taking into account the transitional dynamics.

Our baseline model adopts a tractable log-linear formulation featuring an exogenous innova-

tion network. Section 2.5 shows that our results are more general: in a richer environment with

�exible functional forms and an endogenous innovation network, our welfare su�cient statistic

is still valid to �rst-order around a balanced growth path.

Section 2.6 extends the baseline model with knowledge spillovers from abroad. In this setting,

we derive the unilaterally optimal R&D allocation and the welfare impact of R&D reallocation.

The tractability of our model lends itself to a large number of theoretical extensions. We dis-

cuss some of these extensions in Section 2.7, such as incorporating a production network into

the model (Section 2.7.1) and how to embed our innovation network formulation into a semi-

endogenous growth setting (Section 2.7.2). Section 2.7.3 discuss potential ine�ciencies in a styl-

ized decentralized setting. Section 2.7.4 brie�y describes other extensions in the Online Appendix.

2.1 Economic Environment of the Baseline Model

Preferences and Production Technology There is a representative consumer with log �ow

utility and exponential discounting at rate ρ:

Vt =
∫∞
t
e−ρ(s−t) ln ys ds. (1)

The consumption good at each time t is a Cobb-Douglas aggregator over sectoral goods {yit}Ki=1:

yt =
∏K

i=1y
βi
it ,

∑K
i=1βi = 1. (2)

We refer to βi as the consumption elasticity of sector i.

Each sectoral good i is produced linearly from production workers `it:

yit = qψit`it. (3)

The sectoral productivity qψit depends on a sector’s knowledge stock qit at time t. The collection

of sectoral knowledge stocks {qit}Ki=1 are the state variables of the economy. The exponent ψ

parametrizes how sectoral knowledge translates into sectoral productivity.
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The Innovation Process R&D expands the knowledge stock. At time t, mass si of R&D re-

sources (e.g., scientists) employed in sector i generate a �ow of new innovation nit:

nit = sitηiχit, χit ≡
∏K

j=1q
ωij
jt ,

∑K
j=1ωij ≡ 1. (4)

ηi is the exogenous component of innovation productivity, and χit is the endogenous component.

Importantly, χit is an aggregator over knowledge stock across all sectors. This implies that a

larger knowledge stock qj in sector j facilitates innovation production in sector i with elasticity

ωij , thereby making scientists in sector i conduct R&D more productively. Our formulation thus

captures cross-sector knowledge spillovers; that is, scientists stand on the shoulders of giants

across all sectors of the economy. In the baseline model we assume that χit has constant returns

to scale (

∑K
j=1 ωij = 1) in each sector, which implies sustained and nonexplosive growth. Absent

cross-sector knowledge spillovers, ωij = 1 if i = j and is zero otherwise.

New innovation nit expands the knowledge stock according to the following law of motion:

q̇it/qit = λ ln (nit/qit) . (5)

The key distinction between nit and qit is that the former is a �ow variable re�ecting innovation

output at time t, whereas the latter is a stock variable re�ecting the accumulation of past innova-

tions. The rate at which knowledge expands in sector i is increasing in the �ow of innovation and

decreasing in the existing knowledge stock qit, capturing the notion that innovation gets harder

as the knowledge stock in sector i expands. λ parametrizes the sensitivity of knowledge growth

to the �ow of new innovation relative to the existing stock.

Throughout the rest of the paper, we use boldface variables to denote column vectors (lower-

case) and matrices (uppercase). Let qt denote the column vector whose i-th entry is qit; qt captures

the economy’s state variables.

De�nition 1. (Innovation Network) The innovation network Ω ≡ [ωij] is the K ×K matrix

whose ij-th entry is ωij .

A key object of this study, the Ω matrix represents a weighted directed graph in which eco-

nomic sectors are the graph nodes. Elements of the Ω matrix ωij capture the elasticity to which

sector i’s innovation production bene�ts from sector j’s existing knowledge stock. We refer to

sector j as upstream to sector i and, conversely, i as downstream to j; this terminology captures

the notion that knowledge �ows from upstream sector j to downstream sector i. Absent cross-

sector knowledge spillovers, Ω = I is the identity matrix. The construction is not limited by any

speci�c sector de�nition; for instance, innovation networks can be constructed across industrial

sectors, technology classes, and scienti�c �elds. To make the network analysis interesting, we

assume all sectors are strongly connected: every sector is eventually reachable from every other

sector via knowledge spillovers (i.e., ∀i, j, ∃k such that

[
Ωk
]
i,j
> 0).
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Resources We close the model with resource constraints. The economy is endowed with two

exogenous stocks of resources: production workers of mass
¯̀

and research scientists of mass s̄.

Workers are employed to produce sectoral goods as in (3). Scientists are employed to conduct

R&D. The market clearing conditions for production workers and scientists are:

∑K
i=1`it = ¯̀,

∑K
i=1si = s̄. (6)

Remark. In the baseline model, we separate R&D and production resources for expositional sim-

plicity. As we show below, our results concerns the cross-sector allocation shares of R&D re-

sources (sit/s̄), and our characterization is invariant to the level of R&D resources s̄. Hence, all of

our results hold in a richer model with factor mobility between R&D and production (see Online

Appendix B.10).

2.2 Optimal Allocation of R&D Resources

In this section we characterize the optimal allocation of R&D resources in the economy. Consider

a benevolent social planner who chooses the entire time path of worker and scientist allocations

across sectors to maximize consumer utility. We can write the planner’s problem as

V ∗ ({qi0}) ≡ max
{`it,sit}

∫∞
0
e−ρt

∑K
i=1βi ln yit dt, (7)

subject to the sectoral aggregator (3) for yit, the �ow of new innovation (4), law of motion for

sectoral knowledge (5), and the resource constraints (6).

First, recognize from equation (3) that the planner’s objective is log-linear in the allocation of

production workers, implying the following lemma.

Lemma 1. The planner allocates production workers in proportion to the consumption elasticity
vector β: for all t, `it = βi ¯̀ for each sector i and variety ν.

Lemma 1 simpli�es the planner’s problem into choosing how to allocate scientists only. Recall

Ω ≡ [ωij] is the matrix that encodes the innovation network, and ln qt ≡ [ln qit]
K
i=1 is the vector

of log-knowledge stock at time t. Let γit ≡ sit/s̄ denote the share of scientists allocated to sector

i at time t, and let γt denote the vector [γit]
K
i=1 that sums to one. Using equation (3) to express

consumption in terms of production worker allocation and then applying Lemma 1, we rewrite

the planner’s problem in vector form as

max
{γt} s.t. γ′t1=1∀t

ψ ·
∫∞

0
e−ρtβ′ ln qt dt (8)

s.t. d ln qt
/

dt = λ · (lnη + ln s̄+ lnγt + (Ω− I) ln qt) . (9)

We obtain (9) by substituting the innovation production function (4) into qt’s law of motion (5).
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The planner’s problem may seem intractable: the economy features a vector of state vari-

ables (sectoral knowledge stocks), and the law of motion involves dynamic network spillovers

across sectors, meaning the allocation of R&D in any sector at any time a�ects the evolution of

all state variables in all future times. Our formulation, however, is especially tractable: both the

planner’s objective function (8) and the law of motion (9) are log-linear in the state variables qt.

Such tractability enables us to characterize the solution—the entire time path of optimal R&D

allocation—in closed form. Later in Section 2.5 we generalize our analysis to a nonlinear setting.

Proposition 1. Starting from any vector of initial knowledge stock q0, the optimal R&D allocation
is time-invariant and follows, along the entire time path,

γ ′ =
ρ

ρ+ λ
β′
(
I − Ω

1 + ρ/λ

)−1

. (10)

Proposition 1 shows the optimal cross-sector R&D allocation is time-invariant and follows

γ ′ ∝ β′
(
I − Ω

1+ρ/λ

)−1

; the proportionality constant,
ρ

ρ+λ
, ensures that γ sums to one. To under-

stand the intuition for the result, note that another way to write the optimal allocation vector of

R&D resources γ ′ is:

γ ′ ∝ β′
∞∑

m=0

(
Ω

1 + ρ/λ

)m
= β′

(
I +

Ω

1 + ρ/λ
+

(
Ω

1 + ρ/λ

)2

+ · · ·
)
.

That is, the Leontief inverse

(
I − Ω

1+ρ/λ

)−1

in (10) can be written as a power series of
Ω

1+ρ/λ
.

The �rst term in the in�nite summation, β′I = β′, captures how each sector’s knowledge stock

directly impacts consumer welfare through product quality. This term coincides with the optimal

allocation of production workers (Lemma 1). The products between β′ and subsequent terms in

the power series capture the indirect e�ect of knowledge creation on consumer welfare, through

future innovations and product quality improvements in network-connected sectors. Innovations

in sector j bene�t sector i by endogenously raising the e�ciency of subsequent R&D in sector

i, captured by the aggregator χit in equation (4) with elasticity ωij , which is the ij-th entry of

the innovation network matrix Ω. Improved innovation e�ciency in sector i further generates

additional knock-on e�ects, as new knowledge in sector i facilitates future innovations in all

sectors that bene�t from sector i’s knowledge stock; the higher-powered terms in the in�nite

summation capture these indirect e�ects.

Because network spillovers occur through sectoral knowledge stock, the �ow of new knowl-

edge through current R&D activities can only a�ect innovative e�ciency and product quality in

the future. Hence, the importance of network e�ects in the optimal R&D allocation is modulated

by the discount rate ρ relative to λ, the sensitivity of knowledge growth to the �ow of new innova-

tion relative to the existing stock. The former (ρ) captures discounting of the future, and the latter

(λ) captures how quickly those future bene�ts materialize. We refer to ρ/λ as the society’s e�ec-
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tive discount rate, which is a key parameter in determining optimal innovation allocation. When

ρ/λ is high, the planner discounts future bene�ts heavily, and the network e�ects play a smaller

role. In the limit as ρ/λ → ∞, the planner becomes myopic, and the optimal R&D allocation is

fully pinned down by the consumer preferences β. Conversely, a more patient (low ρ/λ) planner

allocates more R&D resources to sectors that bene�t more sectors in the future, directly or indi-

rectly. Proposition 1 implies that a patient planner directs R&D into basic science; an impatient

planner directs R&D into consumer goods that may be peripheral in the innovation network, such

as textiles and food products.
1

2.3 R&D Allocation and Economic Growth

In this section we show how R&D allocation a�ects the economic growth rate along a balanced

growth path (BGP). We demonstrate that the network’s eigenvector centrality—what we call “in-

novation centrality”—is a su�cient statistic for evaluating the growth rate along a BGP and coin-

cides with the growth-maximizing R&D allocation. We show the socially optimal R&D allocation

γ converges to this growth-maximizing allocation when the planner is in�nitely patient.

De�nition 2. (Innovation Centrality) The vector of sectoral innovation centrality, a ≡ [ai]
K
i=1,

is the dominant left-eigenvector of the innovation network Ω with an associated eigenvalue of

one, satisfying a′ = a′Ω and

∑K
i=1 ai = 1.

Because Ω is an irreducible, row-stochastic matrix, the innovation centrality vector a exists

and is unique by the Perron-Frobenius theorem. We now show a is a key determinant of the BGP

growth rate and coincides with the growth-maximizing R&D allocation.

Let b denote a generic vector of allocation shares with nonnegative entries and

∑K
i=1 bi = 1.

Lemma 2. Consider a BGP in which the aggregate consumption grows at a constant rate, with time-
invariant allocations of production and R&D resources. Suppose R&D resources are allocated accord-
ing to the vector b (i.e., si/s̄ = bi); then, along the BGP, the growth rate of knowledge stock is the
same across sectors and equals to

gq (b) = constant + λ · a′ ln b, (11)

where the right-hand side constant is λ · (ln s̄+ a′ lnη). The aggregate consumption growth rate is

gy (b) = ψ · gq (b) . (12)

Lemma 2 analytically expresses the BGP growth rate of knowledge stock and the aggregate

consumption as functions of the R&D allocation, b. Along the BGP, the knowledge stock grows

1
In Section B.1 of the Online Appendix, we provide an example with three sectors, and we analytically express

the optimal allocation based on network structure and e�ective discount rate ρ/λ.
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at the same rate gq (b) across sectors. The endogenous component of gq (b) is λ times the inner

product between the innovation centrality (a) and the vector of log-R&D allocation shares (ln b)

(recall λ is the sensitivity of knowledge growth to the �ow of new innovation relative to the ex-

isting stock). The exogenous component (the constant term) on the right-hand side of (11) shows

that the growth rate is higher when R&D resources are more abundant (higher s̄), when R&D

leads to more new innovation �ows (higher η), and when a higher �ow innovation (relative to

the existing stock) leads to faster knowledge growth (higher λ). Since ψ parametrizes how knowl-

edge translates into productivity, (c.f. equation 3), the growth rate of the aggregate consumption

is simply ψ times the growth rate of knowledge stock across sectors.

Corollary 1. The R&D allocation that maximizes the BGP consumption growth rate coincides with
the innovation centrality a, as it solves the following problem: a = arg maxb≥0 s.t. 1′b=1 a

′ ln b.

This corollary highlights that innovation centrality a coincides with the growth-maximizing

R&D allocation along a BGP. Intuitively, ai captures the extent to which sector i’s R&D activities

contribute to economic growth, taking into account the network e�ects. Sectors with higher

innovation centrality represent more fundamental technologies in the innovation network.

The corollary also demonstrates that the social planner does not necessarily choose the R&D

allocation that maximizes growth. Unlike the socially optimal allocation γ, which depends on the

e�ective discount rate ρ/λ, the growth-maximizing allocation is equal to the innovation centrality

and is independent of these parameters. Intuitively, the social planner maximizes the welfare

of the consumer, who may prefer better quality products in the near future from consumption-

intensive sectors (e.g., consumer goods such as textiles and food products), and knowledge in

these sectors may not generate much knowledge spillovers for future innovations.

One can rewrite the optimal R&D allocation vector γ as the solution to the following �xed

point equation, which demonstrates how γ varies with the e�ective discount rate ρ/λ:

ρ

λ
(γ ′ − β′) + γ ′ (I −Ω) = 0′. (13)

Equation (13) demonstrates that the optimal R&D allocation γ trades o� between consumer pref-

erences β and long-run growth captured by the innovation centrality a, and ρ/λ modulates the

relative importance of these two terms. When ρ/λ is large—an impatient planner—consumer pref-

erences dominate (limρ/λ→∞ γ = β). The planner places more weight on growth as ρ/λ declines;

in the limit ρ/λ → 0, equation (13) implies that γ ′ (I −Ω) → 0′, thus the optimal allocation

converges to the growth maximizing allocation (limρ/λ→0 γ = a).

Proposition 2. As the planner becomes in�nitely patient (ρ/λ → 0), the optimal R&D allocation
converges to the innovation centrality, which is the growth-maximizing allocation: limρ/λ→0 γ = a.
As the planner becomes in�nitely impatient (ρ/λ → ∞), the optimal R&D allocation converges to
the consumption elasticity vector: limρ/λ→∞ γ = β.
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2.4 The Impact of R&D Allocation on Welfare

We now derive the welfare impact of R&D allocation, taking into account the transition dynamics.

Proposition 3. For any initial knowledge stock q0 and any path of worker allocation {`t}, the
di�erence in consumer welfare generated by two time-invariant R&D allocations b̃ and b is

V
(
q0; {`t} , b̃

)
− V (q0; {`t} , b) =

ψλ

ρ2
γ ′
(

ln b̃− ln b
)
. (14)

Proposition 3 shows that the welfare di�erence resulting from two R&D allocation vectors can

be expressed as the inner product between the optimal R&D allocation γ and the log-di�erence

in R&D allocation vectors, multiplied by the scalar ψλ/ρ2
. The result holds for any time path

of worker allocation and any initial knowledge stock q0; hence, the Proposition can be used for

welfare evaluation of policy counterfactuals that reallocate R&D resources across sectors.

De�nition 3. (Consumption-EquivalentWelfare Gains fromAdopting theOptimal R&D)
Consider an economy with time-invariant R&D allocation b and the associated consumption

path {yt}t≥0. The consumption-equivalent welfare gains from adopting the optimal R&D alloca-
tion γ, is the scalar L (b) such that the consumer is indi�erent between the consumption path

{L (b)× yt}t≥0 and the consumption path generated by reallocating R&D optimally according to

the vector γ, while holding worker allocation unchanged.

The scalarL (b) quanti�es the welfare impact of reallocating R&D resources from b to γ across

sectors. Note that, because the �ow output is log-additive in the knowledge stock qt and worker

allocation `t (equation 3),L (b) does not depend on the path of worker allocation. We next provide

a simple formula for L (b).

Proposition 4. The consumption-equivalent welfare impact of adopting the optimal R&D is

L (b) = exp

(
ψλ

ρ
γ ′ (lnγ − ln b)

)
. (15)

Proposition 4 shows that the consumption-equivalent welfare impact of reallocating R&D

resources optimally, in logs, the inner product between the optimal allocation γ ′ and the log-

di�erence between the optimal and the actual allocations, (lnγ − ln b), multiplied by ψ, the elas-

ticity of productivity to knowledge stock, and λ/ρ, the inverse of the e�ective discount rate. The

inner product term, also known as the relative entropy, is a statistical distance measure of how b

di�ers from γ. Note that ρ/λ a�ects welfare through not only the proportionality constant but

also the optimal allocation γ (as in Proposition 1).
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2.5 General Functional Forms and Endogenous Innovation Network

The baseline model features an exogenous innovation network Ω, as the elasticities of each sec-

tor’s innovation productivity to another sector’s knowledge stock (ωij ≡ ∂ lnχit
∂ ln qjt

) are exogenous

structural parameters. The knowledge spillover dynamics (9) in the baseline model thus form a

log-linear dynamical system. Log-linearity makes the baseline model especially tractable. Under

this formulation, the optimal R&D allocation is time-invariant and holds along the entire tran-

sition path; the su�cient statistic for the welfare gains from changes in the R&D allocation also

accounts for the gains along the entire transition path.

The log-linearity in the baseline model may appear restrictive at �rst, as it rules out the

possibility that degree of knowledge spillovers depend endogenously on the levels of sectoral

knowledge stock: as sector j accumulates knowledge qjt, its contribution for sector i’s innovation

(
∂ lnχit
∂ ln qjt

) may rise or fall. Moreover, sector j’s importance for consumption (
∂ ln yt
∂ ln yjt

) may also change

endogenously. Such nonlinearity can be incorporated by modeling the consumption and innova-

tion spillover elasticities (β and Ω) not as structural parameters but as objects that endogenously

depend on the levels of knowledge stock. In such a richer, nonlinear environment, the optimal

R&D allocation is no longer time-invariant; instead, it varies with the levels of knowledge stock

across sectors (and depends also on the exogenous component ηi of each sector’s innovation pro-

ductivity).

We now show that our baseline results are actually more general. In nonlinear economic

environments described above, our su�cient statistic serves as a �rst-order local approximation

around a balanced growth path (BGP) for the potential welfare impact of reallocating R&D re-

sources. The welfare impact arising from the endogenous changes in the consumption elasticities

or the network structure (due to departure from log-linearity) is second-order in nature.

Speci�cally, consider replacing the log-linear consumption aggregator yt =
∏K

i=1 y
βi
it in (2)

with a general constant-return-to-scale function yt = Y ({yit}), and suppose the law of motion

for sectoral knowledge stock follows

q̇it/qit = f̃ (sitXi ({qjt})) (16)

where f̃ (·) is a concave function, and the R&D spillover functionXi (·) satis�es homogeneous-of-

degree-zero with positive cross-sector spillovers (∂ lnXi (·) /∂ ln qjt > 0 for i 6= j). We assume the

spillovers are bounded, and without loss of generality we set the bound to one (|∂ lnXi (·) /∂ ln qjt| ≤
1∀i, j).

In this environment, consumer welfare given the path of R&D allocation {bit ≡ sit/s̄} is

∫∞
0
e−ρt lnY

({
qψit`it

})
dt, s.t. d ln qit/ dt = f (ln (bits̄Xi ({qjt}))) ∀i, (17)

where f (·) ≡ f̃ (exp (·)), and `it is the mass of production workers allocated to sector i at time t.
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In this environment, we can de�ne the consumption and innovation spillover elasticities as

βit ≡
∂ lnY ({yit})

∂ ln yit
, ωijt ≡





∂ lnχi({qkt})
∂ ln qjt

if i 6= j,

1 +
∂ lnχi({qjt})

∂ ln qit
otherwise.

These elasticities βit, ωijt ∈ [0, 1] are not structural parameters; instead, they are reduced-form

objects evaluated at speci�c levels of allocation and knowledge stock. Precisely because these elas-

ticities change endogenously, the optimal R&D allocation is no longer time-invariant and instead

depends on the levels of knowledge stock across sectors.

Our results in the baseline model extends to this nonlinear environment locally around a BGP,

where the allocations of worker and R&D resources are time invariant, and qit grows at the same

rate across all sectors. Let λ be the slope of f (·), which is common across all sectors. The con-

sumption and innovation spillover elasticities β ≡ [βi] and Ω ≡ [ωij] are time-invariant in a

BGP; hence, we can de�ne γ ′ ∝ β′
(
I − Ω

1+ρ/λ

)−1

and scale its entries so that

∑
i γi = 1. In this

nonlinear environment, the vector γ no longer represents the globally optimal R&D allocation

(as in the baseline model); instead, it is proportional to the local elasticity of how R&D allocation

a�ects welfare, as shown in the following result.

Proposition 5. Consider an economy in a balanced growth path with R&D allocation b. To �rst-
order around the initial BGP, the consumption-equivalent welfare gain of moving from allocation b
to b̃, accounting for transitional dynamics, is exp

(
ψλ
ρ
γ ′
(

ln b̃− ln b
))

.

The Proposition shows that the su�cient statistic for the welfare impact of R&D reallocation

continues to hold as a �rst-order approximation around a BGP of the general nonlinear environ-

ment. Formally, as we show in Online Appendix A.7, the vector γ is proportional to the directional

(Gateaux) derivative of welfare with respect to the R&D allocation. The welfare impact arising

from the endogenous changes in the consumption elasticities or the network structure (due to

departure from log-linearity) is second-order in nature.

2.6 Knowledge Spillovers from Abroad

We will later use our model to assess R&D allocations in real-world economies. As we show, some

countries, like the U.S. and Japan, rely more on domestic knowledge spillovers and less on foreign

knowledge spillovers, while other economies bene�t more from foreign spillovers particularly

from the technologically advanced ones. We now extend our model to incorporate this impor-

tant cross-country heterogeneity, namely the reliance on knowledge spillovers from abroad, and

examine how it a�ects the welfare impact of domestic R&D allocation.
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2.6.1 Setup with Knowledge Spillovers from Abroad

We extend the closed economy model in Section 2.1 by introducing international knowledge

spillovers and trade. The consumer now values both domestic and foreign goods with the constant-

returns-to-scale preference aggregator C (·):

V =
∫∞

0
e−ρt ln C

(
cdt , c

f
t

)
dt,

where cdt is consumption of domestic goods and cft is consumption of foreign goods. As in the

closed economy model, domestic goods represent a Cobb-Douglas aggregation over sectoral goods

(equations 2 and 3). The economy can import foreign goods cft by exporting unconsumed domestic

goods

(
yt − cdt

)
. Let pft be the relative prices of foreign goods. We impose trade balance:

pft c
f
t = yt − cdt . (18)

Domestic innovation production bene�ts from foreign knowledge spillovers

{
qfjt

}K
j=1

:

nit = sitηiχit, where χit =
∏K

j=1

[
(qjt)

xij
(
qfjt

)1−xij
]ωij

. (19)

Like in the closed economy counterpart (4), nit is the �ow of new innovation generated by R&D

resources sit in sector i at time t; new innovation leads knowledge accumulation according to

(5). χit is again the endogenous component of R&D e�ciency in sector i. The di�erence here is

that domestic R&D in sector i bene�ts from not only domestic knowledge qjt in sector j but also

foreign knowledge qfjt. The exponent xij captures the share of domestic contribution of knowledge

spillover from sector j to sector i; when xij = 1 for all i, j, the innovation production function

(19) coincides with the closed economy version (4). xij’s could di�er across countries for various

reasons. For instance, it could re�ect a country’s R&D comparative advantage; it could also re�ect

the degree to which foreign knowledge is accessible and may vary due to the cultural and political

relations between the domestic economy and the rest of the world.

The domestic planner’s problem is allocating workers and R&D resources to maximize domes-

tic welfare, taking the time path of import prices

{
pft

}
and foreign knowledge

{
qft

}
as given:

V ∗
(
q0,
{
qft , p

f
t

}∞
t=0

)
≡ max
{sit,`it}

∫∞
0
e−ρt ln C

(
cdt , c

f
t

)
dt, (20)

subject to the open economy innovation production function (19); trade balance (18); goods pro-

duction functions (2) and (3); the law of motion for domestic knowledge (5); and resource con-

straints (6). To ensure the planning problem (20) is well-de�ned, we assume

∣∣∣ d ln qfit
dt

∣∣∣ is bounded,

and pft > 0 is bounded away from zero.

Remark. We make three remarks on the economic environment with foreign spillovers. First,

while we assume xij to be exogenous and enters the innovation production function (19) log-
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linearly, our analysis holds as a �rst-order approximation in a richer environment where xij de-

pends endogenously on the relative levels of domestic and foreign knowledge stock. This result,

derived in Online Appendix B.7, is analogous to our closed-economy analysis in Section 2.5.

Second, we model international trade through the export of domestic bundle in exchange

for the foreign bundle. This formulation signi�cantly simpli�es the exposition by removing the

planner’s incentive to use R&D allocation to manipulate the terms-of-trade (i.e., the relative prices

of domestic products) and market power vis-a-vis foreign consumers.

Third, it is worth emphasizing that we do not analyze the optimal R&D allocation from the

perspective of maximizing “global welfare”. Doing so requires setting up a multi-country envi-

ronment, which is certainly interesting and creates the opportunity to analyze a new set of other

important issues—such as understanding cross-country R&D comparative advantages and strate-

gic R&D policy—but it is beyond the scope of this paper.

2.6.2 Optimal R&D Allocation and Welfare with Knowledge Spillovers from Abroad

We now derive, in the setting with foreign spillovers, the optimal R&D allocation and the welfare

impact of reallocating R&D resources.

Proposition 6. Given paths of foreign knowledge and relative import prices
{
qft , p

f
t

}∞
t=0

, the solu-
tion to the open economy planner’s problem (20) is time invariant and follows, along the entire time
path, `i/¯̀= βi and si/s̄ = γi, where

γ ′ = ξ−1 ρ

ρ+ λ
β′
(
I − Ω ◦X

1 + ρ/λ

)−1

. (21)

ξ ≡ ρ
ρ+λ
β′
(
I − Ω◦X

1+ρ/λ

)−1

1 is a constant that ensures
∑

i γi = 1;X ≡ [xij] is the matrix encoding
the share of domestic contribution to cross-sector knowledge spillovers; ◦ is the Hadamard product.

Proposition 6 generalizes Proposition 1 in Section 2.2 to an open economy. The ij-th entry

of the Leontief inverse

(
I − Ω◦X

1+ρ/λ

)−1

≡∑∞m=0

(
Ω◦X
1+ρ/λ

)m
summarizes the network spillover ef-

fects from additional domestic knowledge in sector j on subsequent domestic innovation in sector

i. Unlike in the closed economy, each round of network e�ect is no longer captured by the inno-

vation network Ω but is instead captured by Ω◦X : in the presence of knowledge spillovers from

abroad, domestic R&D only contributes partially to the total knowledge spillovers from sector j

to sector i; the elasticity of innovation e�ciency in sector i with respect to domestic knowledge

in sector j is captured by the ij-th entry of Ω ◦X (i.e.,
∂ lnχi
∂ ln qj

= ωijxij).

Proposition 6 highlights that countries with more self-contained innovation networks—such

the U.S. and Japan, as we show later, where R&D builds more heavily on domestic rather than

on foreign knowledge—should allocate more R&D to network-central sectors. Conversely, coun-

tries that bene�t more from foreign spillovers should direct R&D toward sectors that account for
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greater domestic value-added. Using our intuition from the closed economy Proposition 1, it is

as if economies with self-contained innovation networks have patient planners while economies

reliant on foreign knowledge have impatient planners. To see this, consider an economy in which

the domestic share of knowledge spillovers is constant across all sector-pairs, xij = x. The Leon-

tief inverse in (21) simpli�es to

(
I − x · Ω

1+ρ/λ

)−1

. Greater reliance on foreign knowledge (lower

x) is therefore isomorphic to a higher discount rate ρ in a closed-economy, as if the planner place

less value on long-term innovation spillovers.

The proportionality constant ξ in equation (21) ensures γi sums to one. It is a measure of R&D

self-su�ciency. ξ ≤ 1 in open economies and is decreasing in foreign dependence; ξ = 1 only if

the economy does not bene�t from any foreign spillovers (xij = 1 for all i, j).

Our next result provides the consumption-equivalent welfare impact of adopting the optimal

R&D allocation, extending our closed-economy result in Proposition 4.

Proposition 7. Consider an open economy with R&D self-su�ciency measure ξ and given paths of
foreign knowledge and relative import prices

{
qft , p

f
t

}∞
t=0

. For any path of worker {`t} and time-
invariant R&D allocation b, the consumption-equivalent welfare impact of adopting the optimal R&D
allocation is

L (b; ξ) = exp

(
ψξ
λ

ρ
γ ′ (lnγ − ln b)

)
. (22)

Relative to the closed-economy counterpart (15), the open-economy formula (22) depends ad-

ditionally on ξ, the R&D self-su�ciency measure de�ned in Proposition 6. This term formalizes

the notion that, in economies where domestic R&D matters less for long-run spillovers (lower ξ),

suboptimally allocating domestic R&D is also less consequential for welfare.

2.7 Additional Results and Theoretical Extensions

We now discuss several additional theoretical results and extensions. Section 2.7.1 incorporates a

production network into the baseline model. Section 2.7.2 embeds an innovation network into a

semi-endogenous growth setting. Section 2.7.3 discusses potential ine�ciencies in a decentralized

equilibrium. Section 2.7.4 brie�y describes several other extensions in the Online Appendix.

2.7.1 Production Network

Our baseline model features a simple production structure where all goods are produced directly

from labor. We now discuss how to tractably incorporate a canonical production network into our

framework. More details of this extension are provided in Section B.2 of the Online Appendix.

Conceptually, for the optimal R&D allocation γ ′ ∝ β′
(
I − Ω

1+ρ/λ

)−1

, the presence of a pro-

duction network requires a di�erent construction for the β vector, but the innovation network Ω
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term is una�ected. Formally, the β vector should capture the elasticity of aggregate consumption

with respect to the productivity in each sector (
∂ ln yt

∂ ln qψit
); in the presence of a production network, it

should re�ect not only the consumer preferences but also the production network structure. With

this adjustment, our main results continue to hold in this environment.

Speci�cally, suppose the production of good i requires other goods as intermediate inputs, as

in the canonical production network model (Acemoglu et al., 2012):

yit =
(
qψit`it

)αi∏K
j=1 m

σij
ijt , αi +

∑K
j=1σij = 1, (23)

where mijt is the quantity of good j used for the production of good i, αi is sector i’s output

elasticity to value-added, and σij is sector i’s output elasticity to input j. The baseline model is a

special case with σij = 0 for all i, j.

Unlike in our baseline model, the elasticity of the aggregate consumption with respect to

sectoral productivity is no longer the consumption elasticity βi; instead, standard results from

the production network literature (e.g., see Hulten, 1978) imply that
∂ ln yt

∂ ln qψit
= β̂i ≡ αiδi, where

δ′ = β′ (I −Σ)−1
is the in�uence vector, and Σ ≡ [σij] is the input-output elasticity matrix. If

the marginal product of labor is equalized across sectors, then β̂i is the share of labor allocated

to sector i. Our main results from previous sections, including the optimal R&D allocation and

the welfare su�cient statistic, continue to hold when we use the vector β̂ in place of β. In our

empirical exercises, we measure this vector using sectoral value-added as a share of GDP, thereby

accounting for the production network.

2.7.2 Semi-Endogenous Growth

Our baseline model features endogenous growth: a positive growth rate of aggregate output along

a balanced growth path in the absence of population growth. This is because the R&D technology

features aggregate constant-returns-to-scale in sectoral knowledge stock. To embed our innova-

tion network formulation into a semi-endogenous growth setting with a constant growth rate

in the total measure of scientists s̄t = s̄0e
ḡt

, consider replacing the knowledge stock evolution

equation (5) with

q̇it/qit = λ ln
(
nit/q

1+κ
it

)
,

where κ ≥ 0 captures the rate at which proportional improvements in knowledge are getting

harder to �nd (Bloom et al. 2020, Jones 2022). The knowledge law of motion (9) becomes

d ln qt
/

dt = λ · (lnη + ln s̄0 + ḡt+ lnγt + (Ω− (1 + κ) I) ln qt) .

Our baseline model corresponds to the special case where κ = ḡ = 0. When κ > 0, the R&D tech-

nology features aggregate decreasing-returns-to-scale, and the long-run growth rate of the econ-

omy is fully determined by the growth rate ḡ of scientists. In Online Appendix B.3, we show that

19



the optimal R&D allocation follows γ ′ ∝ β′
(
I − Ω

1+κ+ρ/λ

)−1

, and the consumption-equivalent

welfare impact of adopting the optimal allocation is L (b) = exp
(

ψλ
ρ+κλ

γ ′ (lnγ − ln b)
)

. Com-

pared to the formulas under endogenous growth, the semi-endogenous-growth version replaces

the discount rate ρ with ρ + κλ. Intuitively, in the presence of aggregate decreasing returns,

growth in knowledge stock raises the di�culty of future R&D; from a welfare perspective, it is as
if future growth are discounted at a higher rate.

2.7.3 Potential Ine�ciency in A Decentralized Market

Why may a decentralized market not allocate R&D resources e�ciently? In an innovation net-

work, knowledge is a public good, as knowledge creation bene�ts subsequent R&D in other sectors

and all future periods. To the extent that innovators do not fully internalize the future bene�ts,
2

a

decentralized market does not implement the e�cient R&D allocation. To demonstrate the poten-

tial ine�ciency, Online Appendix B.4 constructs a decentralized equilibrium in which innovators

conduct R&D only in pursuit of pro�ts—each innovation is patented, thereby granting the in-

novator a temporary stream of pro�ts until replaced by a future innovation—disregarding any

bene�cial spillovers their R&D activities may provide in the future. As we show, the decentral-

ized allocation of R&D resources along a BGP follows the consumption elasticity β, which can be

e�cient only if the society is completely myopic (ρ/λ→∞).

This illustrative decentralized equilibrium lacks many real-world features of the market for in-

novation (e.g., multi-sector �rms, mergers and acquisitions, and patent licensing). Nevertheless, it

is important to note that, by comparing the R&D allocation in the data to the �rst-best, our notion

of allocative e�ciency—measured by the consumption-equivalent welfare impact of reallocating

R&D optimally—does not require that we take a stance on �rms’ equilibrium conduct; instead, it

directly calculates the welfare impact of reallocating R&D based on the economic environment

speci�ed in Section 2.1.

2.7.4 Other Theoretical Extensions

The Online Appendix includes a number of additional extensions that generalize our main results

to various economic environments.

Section B.5 shows that our results extend naturally to a setting where the planner is con-

strained and can reallocate resources across only a subset of sectors: the constrained-optimal

resource allocation within the subset is proportional to the unconstrained optimal allocation γ.

The open economy analysis in Section 2.6 considers a domestic planner who takes the paths

2
It is worth noting that patents do not necessarily correct for knowledge externalities: while the patent holder

has the exclusive right to use the invention, it does not preclude others from bene�ting from knowledge spillovers.

20



of foreign knowledge as given. Section B.6 considers a domestic planner who internalizes the

impact of domestic allocations on foreign variables. Section B.7 concerns a setting where both the

innovation network (Ω) and the elasticities of foreign spillovers (X) are endogenous.

Section B.8 considers an environment with sector-speci�c λi, the sensitivity of knowledge

growth to the �ow of new innovation relative to the existing stock.

Section B.9 considers a setting where the row-sums of Ω may di�er (and not equal to one).

We show that the knowledge stock in each sector no longer grows at the same rate along a BGP;

instead, the vector of growth rates of qit form the right-Perron vector of Ω.

Section B.10 allows for factor mobility between production and R&D.

3 Data

This section describes the data for our empirical analyses. We use patent citation data across

sectors and countries to construct the global innovation network. We also use data on sectoral

production, �nal use, and R&D. Here we brie�y describe how we construct and harmonize these

data. Section C of the Online Appendix provides more details.

3.1 Data on Patents

U.S. Patents U.S. patent data are from the United States Patent and Trademark O�ce (USPTO).
3

This database provides detailed patent-level records for nearly seven million patents granted by

the USPTO since 1976. The data include, for each patent, the application and grant years, the

technology classi�cations based on the International Patent Classi�cation (IPC) system, and the

geographic locations of the patent assignee and patent inventors (the former holds legal ownership

rights to the patent while the latter may not). Central to our network analysis, we observe each

patent’s citations of prior patents as well as the citations it receives from subsequent patents up

to 2020, the year we extracted the data. In our empirical analysis, we use patents �led before the

end of 2014 to mitigate the right-truncation problem, since patents �led more recently may still

be in the approval process.

Global Patents To capture global innovation, we use Google Patents’ global patent data, which

contain information on more than 36 million patents from over 40 major patent authorities around

the world, including those in the U.S., the European Union, Japan, and China, among others,

starting from the 18th century (data prior to the 1970s have limited coverage). Google Patents

global innovation data are constructed based on the raw data records at DOCDB (EPO worldwide

3
We accessed the patent data via the USPTO PatentsView platform at https://www.patentsview.org/download/.

21

https://www.patentsview.org/download/


bibliographic data), which are the same records underlying other global patent datasets such as

the PATSTAT database. As a result, Google Patents’s data coverage and variable quality are nearly

identical to those of PATSTAT. We choose to use Google Patents data for our main analysis because

they are free of charge for any researcher, and we compare Google Patents to PATSTAT in detail

in the Online Appendix D.

For each patent, Google Patents supplies information similar to the USPTO data described

above. We assign each patent to a geographical unit using the country of residence of its inven-

tors(s), country of residence of the assignee(s), and country of the patent authority, in that order.

When a patent is associated with inventors or assignees from multiple countries, we attribute the

patent to these countries assuming fractional and equal weight per assignee/inventor.

A major challenge when working with international patent data is multi-�ling: to protect in-

tellectual properties, it is common practice for innovators to �le the same invention with multiple

patent authorities in di�erent countries, forming what is called a “patent family.” To avoid double

counting these inventions, our analysis uses only the �rst patent �led in each family when count-

ing new innovation, while attributing all citations made to a whole family to this �rst patent.

To identify patent family, we use the patent family ID assigned by Google Patents, self-reported

multi-�ling status, and the unique identi�er for patents �led under the Patent Cooperation Treaty,

which is an international law treaty aimed at protecting innovations across countries.

We measure the number of patents produced in a country-sector-year, both the raw counts and

with quality adjustments using the number of citations each patent received. To capture actual

patent timing, we use the year a patent was �led rather than granted.

3.2 Data on Production, Final Use, and R&D Allocation

Production and Final Use In our cross-country analysis, for each country and sector, we use

the World Input-Output Database (WIOD, Timmer et al., 2015) to extract sectoral information. The

data cover the years 2000–2014 and 43 major economies, which altogether represent more than

85% of world GDP. WIOD’s sectoral categorization follows the two-digit International Standard

Classi�cation (ISIC) revision 4, with a total of 56 sectors covering the entire production spectrum,

including primary, manufacturing, and service sectors. We obtain data on value-added (gross

value-added, “VA”), employment (“empe”), output (gross output, “GO”). We also obtain informa-

tion on intermediate inputs, value used for consumption, imports, and exports. For the U.S., we

also obtain more detailed sectoral production, consumption, and import-export data, comprising

181 sectors from 1990 to 2019, from the Bureau of Labor Statistics (BLS).

Sectoral R&D Allocation Our quantitative analysis uses data on R&D allocation across di�er-

ent technology classes in each country. There is no standard database to exhaustively measure
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such information. Our primary measure relies on aggregating �rm-level R&D expenditures to

the country-sector-year level, based on three widely used �rm-level data sets: Compustat, World-

scope, and Datastream. Combined, these data cover more than 110,000 global �rms located in 160

countries and account for over 95% of the world’s total market capitalization. For multination-

als, we �rst attribute the �rm-level R&D expenditures to IPC-country level in proportion to each

�rm’s shares of patents in each IPC-country, following Gri�th, Harrison, and Van Reenen (2006),

and then aggregate to IPC-country-year level.

Our primary measure of sectoral R&D is imperfect, as the �rm-level data sets oversample large

�rms and have potentially di�erent reporting standard across countries; we also miss R&D inputs

from public sectors. Nevertheless, it is important to note that, as our theory concerns the cross-

sector R&D allocation, what matters for our quantitative analysis later is the allocation shares of

R&D resources across sectors in each country and not the aggregate R&D levels; any mismeasure-

ment that a�ects all sectors proportionally should have no quantitative impacts. As robustness

checks, we later show that our primary measure of R&D allocation shares correlates strongly

with two independent sources of R&D data, thereby giving us con�dence in using our measure

for quantitative analysis. The �rst robustness check calculates cross-sector R&D allocation using

the innovation output (which is better measured) rather than input: the number of patents pro-

duced in each country-IPC (or country-sector) divided by total number of patents produced in that

speci�c country (correlation with our primary measure of sectoral R&D averages to 0.74 across

countries; see Appendix Table A.1). The second robustness check utilizes the OECD Analytical

Business Enterprise Research and Development (ANBERD) Database (Machin and Van Reenen,

1998), which has country-sector-level R&D information. Relative to our primary R&D measure,

the ANBERD Database has more limited country-year coverage and relies more on imputations

from �rm-level surveys. Our primary R&D measure also allows us to explicitly and transparently

attribute R&D of multi-sector or multinational enterprises to di�erent sectors and countries. Nev-

ertheless, for all the major economies in both data sets, R&D allocation from ANBERD is highly

correlated with our primary measure (see Appendix Table A.1), and our quantitative results are

consistent using both data.

3.3 Concordance

Patent data are classi�ed according to the IPC system, which is distinct from the classi�cations

in our sectoral data. We build concordance between these two data types to construct sectoral

measures of innovation activities and reversely to project sectoral measures into technology class

levels. To project patents from IPC onto sectors, we leverage the sectoral classi�cations covered in

the three �rm-level data sets described above. For the U.S., we link the USPTO patent database to

Compustat using the bridge �le provided by Kogan et al. (2017) and Ma (2021). Firms are classi�ed
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by the North American Industry Classi�cation System (NAICS) codes, which are then mapped

to BLS sectors using the crosswalk �le provided by the BLS website.
4

For the global analysis,

we follow the analogous procedure and match Google Patents with global �rm data from the

Worldscope and Datastream databases. This process provides each patenting �rm’s International

Standard Industrial Classi�cation (ISIC), which can then be accurately mapped to WIOD that is

also organized using the ISIC system. To reverse-project country-sector-year level measures onto

country-IPC-year, we use the sector-IPC mapping provided in Lybbert and Zolas (2014).

We provide details on these matching procedures and the representativeness of using innova-

tion measures aggregated from �rm-level data in Section C of our Online Appendix.

4 Innovation Network and Knowledge Spillovers

In this section, we build several key data elements that will be used in our main quantitative

analysis in Section 5. We �rst construct the innovation network Ω and discuss its empirical prop-

erties. We then empirically validate a key mechanism in our model, that knowledge spillovers

occur through innovation networks both domestically in the U.S. and globally.

4.1 Innovation Network

Constructing the Innovation Network We construct the innovation network from patent

citations. First, we build the sector-to-sector innovation network. Let Citesijt denote the total

number of times that patents in sector i cite patents in sector j, among all patents �led in year t.

As a baseline construction, we follow (Acemoglu et al., 2016) and de�ne ωijt as the share of total

citations patents in sector i made to sector j in year t:

ωijt ≡
Citesijt∑K
k=1Citesikt

. (24)

The object ωijt measures the extent to which upstream sector j’s prior knowledge bene�ts inno-

vation in sector i. The matrix Ωt, whose ij-th entry is ωijt, captures the knowledge �ow network

we refer to as the innovation network. In a global setting, all subscripts will include additional

country dimensions indicating the countries of sectors i and j, and the innovation network will

measure the extent to which upstream country’s sector j’s prior knowledge bene�ts innovation

in focal country’s sector i. We can construct a country-speci�c network using patents from each

country; we can also include patents from a time window broader than one year, such as using all

patents over �ve or ten years.

The sector-to-sector innovation networks appear to be stable over time and across countries,

4
The crosswalk can be accessed at: https://www.bls.gov/emp/documentation/crosswalks.htm.
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suggesting their ability to capture some deep relations between sectoral innovation and tech-

nology di�usion. Table A.5 of the Online Appendix shows the serial correlation of entries in

Ωt is near perfect a decade apart and remains above 0.8 even three decades apart. Table A.6 of

the Online Appendix demonstrates that the innovation network constructed by pooling patents

from all countries near perfectly correlates with the U.S.-speci�c network (correlation 0.97) and

highly correlates (correlation≈ 0.8) with country-speci�c innovation networks from Japan, China,

Germany, Canada, the United Kingdom, and France. These �ndings imply that decisions about

country and time speci�cities of the innovation network do not materially a�ect our analysis.

We should point out that the knowledge spillover network is inherently di�cult to measure.

Despite the evidence (Section 4.2 below in particular) for the usefulness of our citation-based

construction, it is not perfect. In later analysis, we provide several alternative constructions of

the network, such as weighting connections by the quality (total citations) of the cited or citing

patents, to focus only on spillovers among major patents; we also create an innovation network

Ω with entries proportional to citations, without the normalization by each row’s sum. Our quan-

titative �ndings are robust across all of these speci�cations.

Visualizing the Innovation Network Figure 1, Panel (a) visualizes the innovation network

by plotting the matrix Ω of 2010 as a heatmap. Each row and each column is a 3-digit IPC class,

where the color in the i-th row and j-th column corresponds to ωij using the colormap listed to the

right of the �gure. Sectors are sorted by decreasing innovation centrality, the empirical properties

of which we will formally discuss below. A key feature is that IPC classes follow a hierarchical

structure: the innovation network is highly asymmetric, and there is a “pecking order” across

sectors. Innovation-central sectors account for a disproportionate share of citations from all other

sectors (columns are dense on the left but become progressively sparser to the right), yet these

innovation-central sectors do not signi�cantly cite noncentral sectors (rows are sparse on the top

but become progressively denser toward the bottom).

Figure 1, Panel (b) visualizes the global innovation network by plotting each country-sector

as a node, with size drawn in proportion to the total patent counts in our sample. An arrow from

country m sector j to country n sector i indicates knowledge �ow from mj to ni, with arrow

width drawn in proportion to the share of ni’s citations to mj. For visual clarity, only the largest

countries and sectors are shown. Several patterns emerge from this �gure. First, Japan and the

U.S. produce the most patents in our sample. Second, the U.S. receives signi�cantly more foreign

citations than any other economy in our sample; it is a major knowledge exporter and only a

minor knowledge importer.
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Figure 1. Visualizing the Innovation Network

(a) IPC-to-IPC (131×131) network Ω (b) The global innovation network
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Notes. The left panel visualizes the IPC-to-IPC (3-digit level) network Ω as a heatmap, with darker colors representing

larger matrix entries; sectors are ordered according to their innovation centrality. The right panel visualizes the global

innovation network for six economies with the highest total patent output in our sample. Each node is a country-

sector, with size drawn in proportion to patent output. Arrows represent knowledge �ows, with width drawn in

proportion to citation shares.

The Innovation Network Weakly Correlates with Input-Output Networks The innova-

tion network Ω encodes cross-sector linkages via knowledge spillovers. Another prominent type

of cross-sector linkages occur through input-output relations, as sectors purchase intermediate

inputs from one another during production. Table 1 shows that innovation and production net-

works are only weakly correlated. In other words, the two network relations capture di�erent

connections across sectors. Speci�cally, for each of the top ten countries ranked by total patent

output, we compute the industry-by-industry input-output expenditure share matrix, which is a

row stochastic matrix (as is Ω) commonly used to represent input-output relationships. Table 1

presents the correlation between entries in Ω and those in the input-output matrix. The correla-

tion is weak (<0.35) in all economies.

Table 1. Correlations Between Country-Level Innovation Network and Production Network

1. Innovation Network and Knowledge Spillovers

1.1. Innovation Network

Figure 1. Visualizing the Innovation Network

(a) IPC-to-IPC (131×131) Network Ω (b) Global Innovation Network Across Country-Sectors

Table 1. Correlations of Between the Innovation Network
and Country-Level Production Networks

US Japan China South Korea Germany Russia France UK Canada Netherlands

0.32 0.28 0.35 0.31 0.23 0.19 0.36 0.41 0.29 0.22

2

Notes. This table presents the correlations between the country-level innovation network matrix and the country-

level input-output expenditure share matrix for the top 10 countries ranked by total patent counts during 2010–2014.
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Innovation Centrality Across Sectors We provide some descriptive statistics of the innova-

tion centrality a, which is the dominant left eigenvector of the innovation network Ω. Recall that

in our model, a is also the R&D allocation vector that maximizes the growth rate of a closed econ-

omy (Corollary 1) and is an important determinant of the optimal R&D allocation. The left panel

of Figure 2 plots the innovation centrality ai across 3-digit IPC sectors using the 2010 U.S. inno-

vation network, where sectors are ordered along the x-axis in descending ai. The �gure shows

innovation centrality is highly heterogeneous across sectors. To maximize economic growth, the

most innovation-central sector should be allocated about twice as many R&D resources as the

5th sector ranked by ai, about ten times as many as the 20th sector, and about 30 times as many

as the 50th sector. The right panel of Figure 2 identi�es the top 10 IPC classes; these include

several technological classes related to medical science, computing, semiconductors, and electric

communication technologies, among others.

Figure 2. Innovation Centrality and Key Sectors

(a) Innovation Centrality Across IPCs
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(b) Top Ten IPCs by Innovation Centrality ai

1 A61 medical or veterinary science; hygiene
2 G06 computing; calculating or counting
3 H01 basic electric elements
4 H04 electric communication technique
5 G01 measuring; testing
6 B60 vehicles in general
7 G02 optics
8 B01 physical or chemical processes or

apparatus in general
9 C08 organic macromolecular compounds; their

preparation or chemical working-up;
compositions based thereon

10 F16 engineering elements or units; general
measures for producing and maintaining
effective functioning of machines or
installations; thermal insulation in general

Figure 3. Cross-Sector Distribution of Domestic Citation Shares by Country

Panel (a) 56 WIOD
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Notes. This �gure presents the innovation centrality of di�erent technology classes categorized using IPC. Panel (a)

plots innovation centrality ai across 3-digit IPC sectors ranked in descending order based on ai. Panel (b) lists the

top 10 IPC classes by their innovation centrality.

Cross-Country Linkages in the Innovation Network How much do countries bene�t from

foreign knowledge? To answer this, for each country m, sector i, and year t, we compute the

domestic share of citations made by patents in country-sectormi. Figure 3 shows the distribution

of domestic citation shares across all sectors for the ten economies with the highest patent counts

in our sample, for the years 1990, 2000, and 2010. The U.S. relies relatively sparingly on foreign

knowledge: consistently across these three decades, about 70% of citations by U.S. patents are

made to other U.S. patents. In contrast, citations made to foreign patents account for the vast

majority of citations by all other economies except Japan, suggesting these economies bene�t
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signi�cantly from foreign knowledge, most notably from the U.S. The Japanese self-citation shares

increased over time on average, from 65% in 2000 to 77% in 2010. Declining foreign reliance over

time is also observed for China and South Korea, although their levels of foreign reliance remain

high.

Figure 3. Cross-Sector Distribution of Domestic Citation Shares by Country
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Notes. This �gure presents the distribution of each country’s domestic citation shares across sectors, showing the

distribution using 1990, 2000, and 2010 data. Sector de�nitions follow 3-digit IPC classes. Domestic citation share for

each country-sector is de�ned as the number of citations made to domestic patents as a share of total citations made

by new patents invented in that each country-sector.

4.2 Knowledge Spillovers Through the Innovation Network

We now provide evidence that knowledge spillovers occur through the innovation network, with

the purpose of validating our model mechanism and the innovation network construction. We

build on Acemoglu, Akcigit, and Kerr (2016)—which provide similar evidence for the U.S. domes-

tic network—and extend using instrumental variables (IVs) and to the global setting. The IVs are

constructed based on time-varying sectoral exposure to tax-induced user cost of R&D (Wilson,

2009 and Thomson, 2017); they help isolate movements in patent output driven by knowledge

spillovers and not by common shocks to connected sectors (Manski, 1993 and Bloom, Schanker-

man, and Van Reenen, 2013). We �nd evidence for directional knowledge spillovers: each sector’s

innovation output responds only to past upstream innovations and does not respond to past in-

novation from downstream sectors even though they are also connected. We also show that rela-

tive to input-output linkages, the innovation network is a signi�cantly stronger channel through

which knowledge spillovers take place.
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4.2.1 U.S. Evidence

We �rst test the mechanism in the U.S. using an empirical speci�cation derived by our model,

treating the U.S. as a closed economy. Speci�cally, integrating our law of motion (5) over time,

we can express the knowledge stock as ln qjt =
∫∞

0
e−λs lnnj,t−s ds. The innovation production

function (4) further implies a log-linear relationship among sector i’s new patents, sectoral R&D,

and past patents from other upstream sectors:

lnnit = ln ηi + ln sit + λ

K∑

j=1

ωij

(∫ ∞

0

e−λs lnnj,t−s ds

)

︸ ︷︷ ︸
≡lnχit, the aggregation of knowledge that

bene�ts innovation in sector i at time t

. (25)

Equation (25) implies that, after controlling for sectoral R&D expenditures, past patents lnnj,t−s

in sector j in�uence new patent output in sector i through the innovation network ωij . Equation

(25) also shows that, importantly, knowledge spillovers’ e�ect is directional: the knowledge �ow

from sector j to sector i operates through ωij and not ωji.

We test the discrete-time analogue of (25) by constructing the knowledge aggregator χit from

past patents. As a baseline measure, for each sector i, we enumerate over all sectors j from which

knowledge �ows to i, aggregating j’s log patent counts lnnj,t−τ in the past 10 years (1 ≤ τ ≤ 10),

weighted by ωij,t−τ , the share of citation made from i to j in the corresponding year:

Knowledge
Up
it ≡

∑
j 6=i
∑10

τ=1ωij,t−τ lnnjt−τ . (26)

Knowledge
Up
it captures the stock of past knowledge “upstream” of sector i and is the empirical

counterpart to lnχit. We then perform the following regression, with sector and year �xed e�ects:

lnnit = β1 × Knowledge
Up
it + β2 × lnR&Di,t−1 + ξi + ξt + εit, (27)

where nit is the number of patents �led in sector i year t that are eventually granted. R&Di,t−1

is the R&D stock, which is the accumulated R&D expenses over the past �ve years using a decay

rate of 15%, following Hall et al. (2005) and Bloom et al. (2013). These results are robust to using

alternative measures of R&D such as concurrent or lagged R&D expenditures, and R&D stocks

calculated using 5% or 10% knowledge decay rate.

Note that, when constructing the upstream knowledge aggregator (26), we exclude the lagged

patent output from each sector itself. Doing so ensures the coe�cient β1 in regression (27) is not

driven by serially correlated shocks to sectoral patent output, but our results are robust to includ-

ing lagged patent output from own sector as an additional regressor (Appendix Table A.8). Also

note that, theoretically, the knowledge aggregator in (25) discounts past patents exponentially.

Our empirical construction (26) features a discrete cuto� window (τ ≤ 10 years) to be agnostic

about the discount factor λ, but our results are robust to alternative values of τ (see Appendix Ta-
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ble A.9 for τ = 5 and 20), exponential discounting with an annual discount rate of 15% (Appendix

Table A.10), or estimating the impact of past upstream patents nonparametrically at di�erent time

lags (Appendix Figure A.9).

Table 2. U.S. Evidence of Innovation Spillovers Through the Innovation NetworkTable 2. Directed Nature of Knowledge Flow

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6) (7) (8)

KnowledgeU p

it
0.555*** 0.605*** 0.509*** 0.583** 0.790*** 0.840*** 0.756*** 0.917***

(0.174) (0.194) (0.169) (0.269) (0.197) (0.207) (0.192) (0.289)

ln(R&D Stock)i,t−1 0.426*** 0.433*** 0.410*** 0.408*** 0.340*** 0.347*** 0.328*** 0.206

(0.100) (0.101) (0.096) (0.111) (0.114) (0.114) (0.111) (0.133)

KnowledgeDown

it
-0.112 -0.110

(0.152) (0.095)

KnowledgeU p,IO

it
0.258 0.198

(0.165) (0.203)

Specification OLS OLS OLS IV 2nd Stage OLS OLS OLS IV 2nd Stage

IV 1st Stage F-statistics 427 427

R2
0.916 0.917 0.917 0.169 0.900 0.900 0.900 0.092

No. of Sectors 95 95 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1140 1900 1900 1900 1140

Fixed Effects Sector, Year Sector, Year

Table 3. Evidence of the Global Innovation Network for Knowledge Spillovers

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6) (7) (8)

KnowledgeU p

mit
0.162*** 0.188*** 0.159*** 0.226** 0.352*** 0.393*** 0.350*** 0.453***

(0.055) (0.056) (0.055) (0.113) (0.077) (0.080) (0.078) (0.143)

ln(R&D Stock)mi,t−1 0.043*** 0.043*** 0.043*** 0.079*** 0.084*** 0.084*** 0.083*** 0.083***

(0.013) (0.013) (0.013) (0.020) (0.018) (0.018) (0.018) (0.030)

KnowledgeDown

mit
-0.059 -0.094

(0.039) (0.062)

KnowledgeU p,IO

mit
0.070 -0.054

(0.065) (0.068)

Specification OLS OLS OLS IV 2nd Stage OLS OLS OLS IV 2nd Stage

IV 1st Stage F-statistics 148 148

R2
0.968 0.968 0.968 0.035 0.943 0.943 0.943 0.028

No. of Country x Sectors 570 570 556 282 570 570 556 282

No. of Obs 11014 11014 10774 4587 11014 11014 10774 4587

Fixed Effects Country x Sector, Country x Year, Sector x Year Country x Sector, Country x Year, Sector x Year

4

Notes. This table tests the relation between innovation in a focal sector and past innovation in sectors connected

through the innovation network, using the U.S. data from BLS sectors. We restrict the sample to sectors that have at

least 100 patents over the full sample period. Standard errors in parentheses are clustered at the sector level.
∗
,
∗∗

,

and
∗∗∗

indicate signi�cance at the 10%, 5%, and 1% levels, respectively.

Table 2, column (1) presents the results of regression (27). Sectoral R&D expenditure signi�-

cantly predicts the number of new patents �led in a given year, with an elasticity of 0.275. The

knowledge stock upstream of each sector (Knowledge
Up
it ) also signi�cantly predicts patent output,

with an elasticity of 0.586. Column (5) shows that both variables also predict patent quality: sec-

tors with greater R&D and greater upstream knowledge stock tend to produce patents with more

future citation counts. In the Online Appendix Table A.11, we also demonstrate these variables

predict the commercial value of innovation measured using the stock market reaction upon patent

approval (Kogan et al., 2017).

These regressions provide supportive evidence that past knowledge in sectors upstream of i

bene�ts subsequent patent production in the focal sector i. An alternative story relates to common

shocks: a group of sectors connected to each other via citation linkages may face similar demand,

supply and investment opportunities, leading to co-movements of innovation activities. Serial

correlations in such common shocks would lead to a positive coe�cient β1 in regression (27)

even without cross-sector knowledge spillovers. This is a version of the “re�ection problem” à la

Manski (1993) and Bloom et al. (2013).

We implement three additional analyses to address the “common shock” concern. First, we ex-

ploit the directional nature of knowledge spillovers. We construct the knowledge stock aggregator
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for sectors downstream of i in the innovation network:

Knowledge
Down
it ≡∑k 6=i

∑10
τ=1ωki,t−τ lnnkt−τ .

Knowledge
Down
it aggregates the patent output in all sectors k 6= i, weighted by the extent to which

patents in sector k cite those in sector i, and is therefore a measure of the knowledge stock down-
stream of sector i. Because knowledge �ow is directional, there should be an asymmetry: while

Knowledge
Up
it should positively predict subsequent patent output in sector i, Knowledge

Down
it

should not. Yet any common shocks hitting this network should generate symmetric correlations

in innovation output for focal sector i and both its upstream and downstream sectors.

Columns (2) and (6) of Table 2 add Knowledge
Down
it to our baseline regressions. We make two

observations. First, adding Knowledge
Down
it as a control does not meaningfully a�ect the economic

or statistical signi�cance of our two baseline variables. This suggests our baseline regressions are

not simply picking up correlated shocks to local technology clusters. Second, the coe�cient on

Knowledge
Down
it is precisely zero, con�rming our key model mechanism and that knowledge �ow

along the innovation network is directional—it goes only from upstream to downstream, and not

the other way around.

Another related concern is that common shocks operate not through technological linkages

but through input-output (IO) linkages. To address this, we construct the aggregator Knowledge
Up,IO
it

similarly to Knowledge
Up
it , but using patents from other sectors weighted not by the innovation

network, as in (26), but instead by sector i’s cost share on inputs from sector j. Columns (3)

and (7) of Table 2 show the regression results when including Knowledge
Up,IO
it . Knowledge from

innovation-upstream sectors remains an economically and statistically signi�cant predictor of

subsequent innovation in the focal sector. By contrast, Knowledge
Up,IO
it has a smaller impact on

sector i’s patent quantity, and insigni�cant e�ect on innovation quality in these speci�cations.

These results, along with the fact that the innovation network only weakly correlates with the IO

network (see Table 1), imply that the innovation network provides valuable incremental informa-

tion that is particularly powerful for understanding knowledge spillovers across sectors.

Next, we adopt another approach to address the “common shock” concern using tax-induced

changes to the e�ective cost of R&D to create exogenous variations in innovation activities, fol-

lowing Bloom, Schankerman, and Van Reenen (2013). We brie�y describe the approach here and

provide more details in the Online Appendix E.3. The approach leverages the fact that the user-

cost of R&D capital (i.e., the cost of conducting R&D) varies with state-level R&D tax credit, de-

preciation allowance, and corporate tax rate. Cross-sector heterogeneity in the geographic dis-

tribution of R&D activities in turn translates into R&D cost di�erences across sectors and over

time. For the U.S., we use Wilson (2009)’s estimates of state-speci�c R&D cost shifters, combined

with our estimates of the cross-state distribution of each sector’s R&D, to calculate a sector’s R&D
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costs. For the global setting below, we follow Thomson (2017) to calculate the user cost of R&D

capital at the country-sector-year level.

We �rst create �tted values of sectoral innovation output (lnnit) using R&D cost shifters; we

then use these �tted values in equation (26) to construct a predicted value of ̂Knowledge

Up

it , which

is in turn used as an instrumental variable (IV) for Knowledge
Up
it for a two-stage least-squares

(2SLS) analysis. Columns (4) and (8) in Table 2 remain qualitatively and quantitatively robust to

using this IV strategy. Details of this analysis are provided in Online Appendix E.3.

4.2.2 Global Evidence

We now test international knowledge spillovers in our global sample. First, we construct an anal-

ogous measure of upstream knowledge stock: for each focal country m, sector i in year t, we

enumerate over all countries c and sectors j in our sample, aggregating the (log-)patent output in

cj over the past 10 years, weighted by the share ofmi’s citations that are to cj in the corresponding

year:

Knowledge
Up
mit ≡

∑
cj 6=mi

∑10
τ=1

Citesmi→cj,t−τ∑N
c′=1

∑K
k=1Citesmi→c′k,,t−τ

lnncj,t−τ . (28)

Next, we adapt our closed economy test of knowledge spillovers to perform on the global

innovation network. In this case, the unit of observation is at the country-industry-year level,

and we include a saturated set (country-industry, country-year, industry-year) of �xed e�ects:

lnnmit = β1 × Knowledge
Up
mit + β2 × lnR&Dmi,t−1 + ξmi + ξmt + ξit + εict. (29)

Table 3 shows the results: knowledge stock upstream of each country-industry signi�cantly pre-

dicts subsequent patent counts (column 1) and citation-adjusted patent counts (column 5) even in

the global setting. The coe�cients are lower than estimates based only on the U.S., suggesting

that knowledge spillovers are stronger across sectors within the U.S. than they are across coun-

tries, potentially due to barriers to cross-border knowledge di�usion such as cultural and language

di�erences, and inappropriateness of foreign technology.

To rule out common shocks to technological and input-output clusters, we again make use of

knowledge aggregated from downstream, from the input-output network, and the tax-induced IV,

and �nd evidence in support of knowledge spillovers through the innovation network.

5 Application: R&D Resource Allocation in the Data

This section hosts our main empirical analysis, which uses our model to study the allocation

of R&D resources in the data. We present the computed unilaterally optimal allocation of R&D

resources across sectors for each country in our sample. We show that on average, sectors that
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Table 3. Global Evidence of Knowledge Spillovers Through the Innovation Network

Table 2. Directed Nature of Knowledge Flow

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6) (7) (8)

KnowledgeU p

it
0.555*** 0.605*** 0.509*** 0.583** 0.790*** 0.840*** 0.756*** 0.917***

(0.174) (0.194) (0.169) (0.269) (0.197) (0.207) (0.192) (0.289)

ln(R&D Stock)i,t−1 0.426*** 0.433*** 0.410*** 0.408*** 0.340*** 0.347*** 0.328*** 0.206

(0.100) (0.101) (0.096) (0.111) (0.114) (0.114) (0.111) (0.133)

KnowledgeDown

it
-0.112 -0.110

(0.152) (0.095)

KnowledgeU p,IO

it
0.258 0.198

(0.165) (0.203)

Specification OLS OLS OLS IV 2nd Stage OLS OLS OLS IV 2nd Stage

IV 1st Stage F-statistics 427 427

R2
0.916 0.917 0.917 0.169 0.900 0.900 0.900 0.092

No. of Sectors 95 95 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1140 1900 1900 1900 1140

Fixed Effects Sector, Year Sector, Year

Table 3. Evidence of the Global Innovation Network for Knowledge Spillovers

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6) (7) (8)

KnowledgeU p

mit
0.162*** 0.188*** 0.159*** 0.226** 0.352*** 0.393*** 0.350*** 0.453***

(0.055) (0.056) (0.055) (0.113) (0.077) (0.080) (0.078) (0.143)

ln(R&D Stock)mi,t−1 0.043*** 0.043*** 0.043*** 0.079*** 0.084*** 0.084*** 0.083*** 0.083***

(0.013) (0.013) (0.013) (0.020) (0.018) (0.018) (0.018) (0.030)

KnowledgeDown

mit
-0.059 -0.094

(0.039) (0.062)

KnowledgeU p,IO

mit
0.070 -0.054

(0.065) (0.068)

Specification OLS OLS OLS IV 2nd Stage OLS OLS OLS IV 2nd Stage

IV 1st Stage F-statistics 148 148

R2
0.968 0.968 0.968 0.035 0.943 0.943 0.943 0.028

No. of Country x Sectors 570 570 556 282 570 570 556 282

No. of Obs 11014 11014 10774 4587 11014 11014 10774 4587

Fixed Effects Country x Sector, Country x Year, Sector x Year Country x Sector, Country x Year, Sector x Year

4

Notes. This table tests the relation between innovation in a focal sector and past innovation in connected sectors

through the innovation network, in an international setting. We restrict the sample to country-sectors with at least

10 patents over the full sample period. Standard errors in parentheses are clustered at the country-sector level.
∗
,
∗∗

,

and
∗∗∗

indicate signi�cance at the 10%, 5%, and 1% levels respectively.

should have more R&D resources do receive more resources, especially for the �ve economies with

the most patents during our sample period. Nevertheless, the residual misalignment between the

optimal and actual allocations remains large and is highly heterogeneous across countries. We

compute the welfare gains from adopting the optimal R&D allocation for each country.

5.1 Optimal R&D Allocation

For each country and year, we calculate the unilaterally optimal cross-sector allocation of R&D

resources γ, using Proposition 6:

γ ′ = ξ−1 ρ

ρ+ λ
β
′
(
I − Ω ◦X

1 + ρ/λ

)−1

, (30)

where the proportionality constant ξ ensures that elements in the optimal allocation vector γ sum

to one and is a measure of R&D self-su�ciency. We measureβ using each country’s sectoral value-

added relative to GDP in that year (thereby accounting for input-output linkages; see Section

2.7.1). Recall that X ≡ [xij] is the matrix encoding the share of domestic contribution to cross-

sector knowledge spillovers; we measure xij as the share of citations from i to sector j that are

toward domestic patents in j. As Figure 3 shows, entries ofX average to above 70% across sectors

for the U.S. but are signi�cantly lower for all other countries except Japan in recent years. For Ω,

we use the innovation network built using all global patents �led within ten years up to the year

prior to the analysis. That is, for analysis of 2010, we use Ω constructed using all patents �led

between 2000 and 2009.
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To implement the formula in (30), we need to specify the discount rate ρ and the elasticity λ

of knowledge growth with respect to the new innovation �ows. As a baseline, we set discount

rate ρ = 5%. Because knowledge stock does not have a natural scale, we rely on the empirical

pattern of knowledge spillover dynamics to calibrate λ. Speci�cally, equation (25) implies that

the spillover e�ect of past upstream knowledge on current innovation decays over time at rate

λ. We estimate the spillover e�ects of past upstream patents nonparametrically at di�erent time

lags (Appendix Figure A.9). We �nd that the knowledge spillovers have a half-life of about four

years, corresponding to λ = 0.17, which we adopt as the baseline calibration. Qualitatively, our

analysis is not sensitive to the value of ρ/λ: as we show in the Online Appendix Table A.20,

the optimal allocation γ is highly correlated across speci�cations with alternative values of ρ/λ.
5

The Online Appendix also reports additional results and sensitivity checks such as using data

from other sample periods, using alternative speci�cations for Ω, and calibrate sector-speci�c λi.

We describe these and other extensions in Section 5.4.

Figure 4. Optimal R&D Allocations in Di�erent Countries
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Notes. This �gure shows the optimal R&D allocation across 20 3-digit IPC classes with the most patents for the

�ve economies that produced the most patents in 2010–2014. Optimal allocations are calculated using our baseline

calibration ρ = 5%,λ = 0.17. Sectors are sorted by the optimal allocation for the U.S.,γUS .

Figure 4 plots the optimal R&D allocation γ for the �ve economies that produced the most

5
One reason why our conclusions are robust to alternative values of ρ/λ is that, as discussed previously, an in-

crease in ρ/λ has the same implication for the optimal R&D allocation as an increase in a country’s reliance on foreign

knowledge. The substantial cross-country variation in foreign reliance (see Figure 3) dwarfs reasonable variation in

the calibration of ρ/λ. Hence, the qualitative cross-country di�erences in unilaterally optimal R&D allocations are

not sensitive to our calibration of ρ/λ.
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patents in 2010–2014. For visual clarity, we only show the top 20 3-digit IPC classes ranked by

total patent counts; these 20 classes account for 75% of all patents. The level of optimal R&D

resources is shown on the y-axis, and the x-axis represents IPCs (sorted by γUS).

For the U.S. (solid black line), the optimal allocation favors sectors with the highest innovation

centrality, as listed in Figure 2, such as medical science (A61), basic electric elements (H01, e.g.,

semiconductors), and computing devices (G06). The top 10 IPCs (out of 131) should receive about

a third of total U.S. R&D resources. The correlation between optimal U.S. R&D allocation and the

innovation centrality a is 0.75. The correlation is high because the U.S. has a self-contained in-

novation network with relatively few citations toward foreign patents; hence, its planner should

internalize more knowledge spillovers. The correlation is not perfect since the planner also consid-

ers IPC’s importance for domestic production, encoded in the value-added share vector β, which

raises the optimal allocation of high-β sectors such as vehicles (B60).

Figure 4 also reveals cross-country variations in the unilaterally optimal R&D allocations.

Relative to the U.S., Germany and Japan should allocate more toward vehicles (B60); South Korea

should allocate more toward electric communication technique (H04); all four non-U.S. economies

should allocate less toward medical science (A61).

5.2 Innovation Allocation in the Data

We �rst present our model’s ability to �t R&D resource allocation in the U.S. The left panel of

Figure 5 shows the scatter plot of sectoral R&D expenditure (as a share of total R&D) against

the optimal R&D expenditure share γUS for the sample period 2010–2014. The linear �t (solid

line) is close to the 45-degree line (dashed) with a slope of 1.11 (t-statistic 7.64), indicating that

on average, sectors that should optimally receive more R&D resources do indeed receive more

R&D resources. In the right panel of Figure 5, we change the y-axis to sectoral patent output

as a share of total patent output; again, sectoral patent output aligns very well with γUS , with a

slope of 1.05 (t-statistic 8.20). To be clear, the strong alignment between real-world and optimal

R&D allocations does not imply the U.S. allocates R&D optimally: there is substantial residual

variation in R&D allocations as they disperse around the 45-degree line. The vertical distance

between each observation and the 45-degree line measures the amount of R&D resources that

need to be reassigned to achieve the optimal allocation. We quantitatively assess the welfare

gains from adopting the optimal R&D allocation in Section 5.3 below.
6

6
A potential concern is that Figure 5 picks up a mechanical relationship: it may be that sectors with more re-

sources produce more patents and citations, thereby appearing to be more central in the innovation network Ω—in

other words, allocated resources reversely a�ect sectoral centrality. To argue against this possibility, we reproduce

our empirical exercises using the innovation network constructed using citations from Japanese patents to Japanese

patents. Because Japan’s innovation network is self-contained and has few citations toward foreign patents (Figure

3), the network is by construction independent of U.S. R&D. All of our �ndings continue to hold, suggesting that in-
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Figure 5. U.S. Actual R&D Allocation vs. Optimal AllocationγUS

Figure 4. Optimal R&D Allocations for Different Countries

0

.05

.1

O
pt

im
al

 A
llo

ca
tio

n

med
ica

l o
r v

ete
rin

ary
 sc

ien
ce

 A61

ba
sic

 el
ec

tric
 el

em
en

ts 
H01

co
mpu

tin
g &

 ca
lcu

lat
ing

 or
 co

un
tin

g G
06

ve
hic

les
 in

 ge
ne

ral
 B60

ele
ctr

ic 
co

mmun
ica

tio
n t

ec
hn

iqu
e H

04

org
an

ic 
mac

rom
ole

cu
lar

 co
mpo

un
ds

 C
08

fur
nit

ure
 A47

mea
su

rin
g &

 te
sti

ng
 G

01

ph
ys

ica
l o

r c
he

mica
l a

pp
ara

tus
 B01

en
gin

ee
rin

g e
lem

en
ts 

or 
un

its
 F16

co
nv

ey
ing

, p
ac

kin
g &

 st
ori

ng
 B65

ag
ric

ult
ure

 A01

org
an

ic 
ch

em
ist

ry 
C07

ea
rth

 or
 ro

ck
 dr

illin
g &

 m
ini

ng
 E21

op
tic

s G
02

sp
ort

s &
 ga

mes
 A63

bio
ch

em
ist

ry,
 be

er,
 m

icr
ob

iol
og

y &
 en

zy
molo

gy
 C

12

ele
ctr

ic 
po

wer 
H02

inf
orm

ati
on

 st
ora

ge
 G

11

ba
sic

 el
ec

tro
nic

 ci
rcu

itry
 H

03

United States Japan China

South Korea Germany European Union

Figure 5. U.S. Sectoral R&D and Patent Output Align Well With γUS in 2010
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Notes. This �gure shows scatter plots of real-world sectoral R&D expenditure shares (left panel) and patent output

shares (right panel) against optimal R&D allocation shares, γUS , for the U.S. in 2010-2014. The solid line is the linear

�t; the dashed line is the 45-degree line. For visual clarity, we exclude 3 outlier sectors (out of 131) that account for

>7.5% of R&D shares or patent output from the scatter plots, but all sectors are used for the linear �t.

There is substantial cross-country heterogeneity in R&D resource allocations. Figure 6 shows

scatter plots of sectoral R&D expenditure shares against the unilaterally optimal R&D allocations

for ten countries that �led the most patents in 2010–2014. Sectoral R&D expenditure correlates

strongly with the optimal R&D allocations for the �ve countries shown in the top row (U.S., Japan,

China, South Korea, and Germany), and the relationship is weaker for the �ve economies at the

bottom (Russia, France, U.K., Canada, and Netherlands). As we have noted, a line-of-�t with a

slope of 1 does not imply resources are allocated optimally; nevertheless, Figure 5 suggests that

on average, more resources need to be reallocated to achieve optimality in the �ve economies in

the bottom row. These results are robust to using patent output shares and R&D shares reported

in OECD ANBERD database as measures of cross-sector R&D resource allocation (Figures A.13

and A.15 in the Online Appendix), suggesting that our results are not driven by the coverage and

quality of our R&D expenditure variable. Figure A.12 in the Online Appendix shows that very

similar patterns hold in the years 2000 and 2005.

5.3 Welfare Gains from Improving R&D Allocation

We now quantify the potential welfare gains from improving R&D allocation, using the welfare

formula in Proposition 7:

lnL (b, ξ) = ψ
λ

ρ
ξ︸︷︷︸

self su�ciency

×γ ′ (lnγ − ln b)︸ ︷︷ ︸
R&D misallocation

, (31)

novation centrality a—which correlates strongly with the U.S. optimal R&D allocation γUS
—indeed picks up sectoral

importance in the innovation network rather than representing historical R&D expenditures.
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Figure 6. Actual R&D Allocation vs. Optimal Allocation Across Countries
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Notes. This �gure shows scatter plots of sectoral R&D expenditure shares against the optimal sectoral share of R&D

allocation for the top ten innovative countries (in terms of patent output) using data from 2010–2014. The solid line

is the linear �t; the dashed line is the 45-degree line. For visual clarity, we exclude outlier sectors that account for

>7.5% of national R&D shares from the scatter plots, but all sectors are used for the linear �t.

where lnL (b, ξ) is the consumption-equivalent welfare gains in logs, b is the empirical R&D

allocation vector, γ is the optimal R&D allocation vector, and ξ ≡ ρ
ρ+λ
β′
(
I − Ω◦X

1+ρ/λ

)−1

1 is the

scalar measure of R&D self-su�ciency, which increases in domestic citation shares xij . ψ captures

the elasticity of productivity to knowledge stock and thus proportionally controls the welfare

impact of R&D allocation. It is an additional parameter to be calibrated. We specify ψ = 0.06,

which implies a semi-elasticity ( dgy/ d ln s̄ = ψλ =) 0.01 of BGP consumption growth rate to

the total stock of R&D resource, consistent with standard calibrations in the growth literature

(Akcigit and Kerr, 2018, Akcigit et al., 2021).

Equation (31) implies a natural decomposition when comparing across countries the potential

welfare gains from reallocating R&D: misallocation, measured as relative entropy from the actual

allocation b to the optimal γ (higher γ ′ (lnγ − ln b) means less e�cient) and self-su�ciency (ξ).

Holding an economy’s R&D self-su�ciency constant, worse misallocation implies larger potential

gains; and, as an economy bene�ts more from foreign knowledge spillovers (lower ξ), domestic

R&D misallocation becomes less consequential for consumer welfare.

Figure 7 shows the degree of misallocation and the size of the potential welfare gains from R&D

reallocation for the 19 economies that �led the most patents during 2010–2014. Because of the EU’s

high degree of economic integration, we also aggregate R&D from all EU countries and calculate

the allocative e�ciency of the EU as a single, integrated economy, which is listed as the 20th

economy in Figure 7. The dark bars represent the misallocation term (left Y-axis). Among high-

income countries, Japan has the most e�cient R&D allocation, followed by other top-patenting
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Figure 7. R&D Allocative E�ciency and Potential Welfare Gains Across Countries
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Notes. This table shows the level of R&D misallocation (dark bars) and the potential welfare gains (light grey bars)

from adoption optimal R&D allocation across 19 innovative countries with the highest patent outputs in our sample,

and the integrated economy of the European Union, using 2010-2014 data. The calculation focuses on R&D in top 50

IPC classes by total patents.

countries like the U.S., Germany, and South Korea. Among high-income economies in Europe,

Switzerland also has a higher allocative e�ciency compared to its peers. When evaluated as a

single integrated economy, the EU’s allocative e�ciency is comparable to Italy’s and is marginally

better than France’s.

The light grey bars in Figure 7 represent the potential welfare gains of reallocating R&D op-

timally (right Y-axis). By our welfare accounting formula (31), the welfare gain is proportional

to the misallocation term times the R&D self-su�ciency measure ξ. For the two economies with

self-contained innovation networks, namely the U.S. and Japan, ξ is closer to one, so the overall

welfare gains (grey bars) are closer in magnitude to the misallocation terms (dark bars). By con-

trast, the welfare gains are comparatively lower than the corresponding misallocation terms in all

other economies, as their domestic R&D misallocation is less consequential for economic growth

because of their dependence on foreign knowledge spillovers.

Table 4 shows the size of the potential welfare gains from adopting the optimal allocation,

evaluated using R&D allocation measured in the years 2000, 2005, and 2010. For the year 2010,

adopting the optimal allocation in Japan, which has the most e�cient R&D allocation in our sam-

ple, could lead to welfare improvements equivalent to raising consumption along the entire path

by 5.64%. The potential welfare gains for the U.S. are 8.04% in consumption-equivalent terms,
7

which is above the average in our sample. Russia has the highest potential gains, equivalent to

7
In Section B.6 of the Online Appendix, we derive the optimal R&D allocation and the welfare cost formula when

the domestic planner takes into account how domestic R&D a�ects foreign variables. We �nd very similar welfare

gains under that speci�cation.
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16.76% consumption gains after adopting the optinal allocation. Moving to the country-speci�c

optimal R&D allocation in 2010 would generate consumption-equivalent welfare gains of 5.60% in

China, 4.24% in South Korea, and 4.09% in Germany. For most economies, the size of the potential

welfare gains has been stable since the 2000s.

It is important to note that a more allocatively e�cient country is not necessarily more inno-

vative in absolute terms. Instead, the extent of misallocation re�ects the distance from actual R&D

allocation (b) to each country’s own e�cient benchmark (γ), and our welfare calculations re�ect

how much each country could gain when moving to that benchmark, holding all other economic

conditions �xed.

Table 4. Percentage (%) Consumption Gains By Moving to Each Country’s Optimal R&D AllocationTable 4. Country-Level Welfare Loss

US Japan China South Korea Germany Russia France UK Canada Netherlands

2000 9.98 4.24 5.78 5.25 4.79 13.70 5.17 7.55 7.22 6.70
2005 8.85 5.04 5.26 3.92 4.11 11.18 5.38 8.17 7.29 5.45
2010 8.04 5.64 5.60 4.24 4.09 16.76 5.38 8.15 6.21 10.22

Sweden Switzerland Italy Finland India Australia Belgium Austria Denmark European Union

2000 6.65 5.18 5.04 5.39 10.91 5.72 5.72 6.52 5.93 5.91
2005 5.53 4.10 4.57 5.63 8.33 4.19 5.62 8.50 5.30 5.04
2010 6.20 3.67 4.40 7.95 6.21 7.30 6.73 9.87 5.39 5.76

Figure 8. Source of Misallocation
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Notes. This table shows the consumption-equivalent welfare gains when each economy moves its optimal R&D

allocation, calculated using the formula (31) under our baseline calibration {ρ, λ, ψ} = {0.05, 0.17, 0.06}. Section

5.4 discusses robustness under di�erent parameter values.

5.4 Additional Results, Robustness Checks, and Sensitivity Analysis

In Online Appendix E.4, we present additional results and robustness checks on our quantitative

analysis of R&D reallocation. Note that our R&D allocation accounting exercise rely on informa-

tion on the network Ω, the value of the e�ective discount rate ρ/λ, and the elasticity of produc-

tivity to knowledge ψ. In the baseline speci�cation, we compute entry ωij of Ω as the share of

all citations from i that are towards j (
Citesi→j∑
k Citesi→k

), and we set {ρ, λ, ψ} = {0.05, 0.17, 0.06}. For

expositional simplicity, the baseline results focus on top innovative sectors and in the most recent

time period. We now tackle the robustness along all these dimensions in the Online Appendix.

Table A.20 shows that the optimal R&D allocation γ is highly stable (by both Pearson’s cor-

relation and Spearman’s rank correlation) across the following alternative speci�cations of the

innovation network Ω and parameterizations of ρ and λ.
8

8
We do not report robustness results under alternative values of parameter ψ, as the parameter does not a�ect

the optimal allocation γ. The welfare impact of R&D allocation is directly proportional ψ, so our baseline results in

Table 4 can be directly rescaled for di�erent values of ψ.
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As discussed in Section 4.1, cross-sector knowledge spillovers are inherently di�cult to cap-

ture. We consider several alternative speci�cations of Ω. In rows A1 and A2, we weigh each

citation linkage in Ω construction (24) by the quality of either the citing (row A1) or the cited

patent (row A2) measured using the total forward citations received by these patents. This way,

we over-weigh the citation linkage when the technologies involved are impactful. The innovation

networks in these extensions therefore weigh more heavily the spillovers among major patents.

In row A3, we construct ωij ∝ Citesi→j to scale directly with the total citations totally across

or ij-pairs (rather than normalized by the citations from i), and we choose the proportionality

constant so that the spectral radius of Ω is equal to one, ensuring endogenous growth as in our

baseline model (see Section B.9 for the theoretical discussion of this speci�cation).

In rows B1 to B7, we consider a range of alternative values for ρ/λ and show that the optimal

R&D allocation correlates highly with our baseline speci�cation. We also consider a speci�cation

with sector-speci�c λi (row C1). The optimal R&D allocation in this environment is derived in

Online Appendix B.8; the heterogeneity in λi is measured using variations in each sector’s median

ROA (return on assets) in our �rm-level datasets, with the mapping motivated by the decentralized

economy constructed in Online Appendix B.4.

Finally, one related concern is that citations are only noisy proxies of knowledge spillovers,

and thus the innovation network can only be noisy measured. While we cannot purge the mea-

surement error, we conduct the robustness check in reverse and show our quantitative analysis is

robust to introducing additional, simulated random errors to Ω, shown in rows D1 to D10.

5.5 How Does R&D Allocation Compare with the Optimal in the U.S.?

We here provide some descriptive evidence for how the actual R&D allocation compares with the

optimal in the U.S. Figure 8 plots the log-ratio between the actual R&D expenditure share in the

U.S. and the optimal allocation for the 30 largest 3-digit IPC classes by patent output. Altogether,

these 30 IPC classes (out of 131) account for 84% of patents and 90% of R&D expenditures in the U.S.

Though providing a full set of policy recommendations on R&D allocation is beyond the scope of

this paper, this �gure conveys several noteworthy messages. Electric communication technique

(H04; e.g., telephonic communication, wireless communication), which ranks 4th in centrality

(Figure 2) and 9th in the optimal allocation γ (Figure 4), is over-invested. Meanwhile, within

the same broad IPC class H (electricity), the more central and fundamental class Basic Electric

Elements (H01; e.g., semiconductor devices) is underinvested. In terms of its economic magnitude,

−0.60, our log-ratio scale suggests that the real allocation is 55% (exp(−0.60)) of the optimal level;

in other words, R&D in semiconductor devices is underfunded by about 45%. This supports the

recent U.S. initiatives (such as the CHIPS For America Act) to invest in the semiconductor industry.

Another observation is that the underinvested group (right end of the graph) over-represents IPC
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classes related to technologies often termed as “green innovation” (see Cohen, Gurun, and Nguyen

2020) that can help reduce pollution and the negative consequences of resource exploitation. For

instance, one of the most underinvested IPC class in the �gure, B01, covers subclasses on waste

management, alternative energy production, and environmental management. Figure A.17 of the

Online Appendix further demonstrates the R&D allocative e�ciency in the US across 3-digit IPC

classes within each broad 1-digit IPC technology class.

Figure 8. U.S. R&D Misallocation in the Top 30 Innovative IPC Classes

Table 4. Country-Level Welfare Loss

US Japan China South Korea Germany Russia France UK Canada Netherlands

2000 9.98 4.24 5.78 5.25 4.79 13.70 5.17 7.55 7.22 6.70
2005 8.85 5.04 5.26 3.92 4.11 11.18 5.38 8.17 7.29 5.45
2010 8.04 5.64 5.60 4.24 4.09 16.76 5.38 8.15 6.21 10.22

Sweden Switzerland Italy Finland India Australia Belgium Austria Denmark European Union

2000 6.65 5.18 5.04 5.39 10.91 5.72 5.72 6.52 5.93 5.91
2005 5.53 4.10 4.57 5.63 8.33 4.19 5.62 8.50 5.30 5.04
2010 6.20 3.67 4.40 7.95 6.21 7.30 6.73 9.87 5.39 5.76

Figure 8. Source of Misallocation

-3
-2
-1
0
1
2

     

ele
ctr

ic c
om

mun
ica

tio
n t

ec
hn

iqu
e H

04

inf
orm

ati
on

 st
ora

ge
 G

11

ba
sic

 el
ec

tro
nic

 cir
cu

itry
 H03

sig
na

llin
g G

08

op
tics

 G
02

co
mpu

tin
g &

 ca
lcu

lat
ing

 or
 co

un
tin

g G
06

ed
uc

ati
ng

, c
ryp

tog
rap

hy
 & ad

ve
rtis

ing
 G

09

ph
oto

gra
ph

y G
03

mea
su

rin
g &

 te
stin

g G
01

med
ica

l o
r v

ete
rin

ary
 sc

ien
ce

 A61

ele
ctr

ic p
ow

er 
H02

org
an

ic c
he

mistr
y C

07

co
mbu

stio
n e

ng
ine

s F
02

en
gin

ee
rin

g e
lem

en
ts 

or 
un

its 
F16

ve
hic

les
 in

 ge
ne

ral
 B60

ba
sic

 el
ec

tric
 el

em
en

ts 
H01

mac
hin

e t
oo

ls B
23

bio
ch

em
istr

y, b
ee

r, m
icr

ob
iolo

gy
 & en

zym
olo

gy
 C12

co
nv

ey
ing

, p
ac

kin
g &

 st
ori

ng
 B65

ge
ne

ral
 m

ac
hin

es
 & st

ea
m en

gin
es

 F01

org
an

ic m
ac

rom
ole

cu
lar

 co
mpo

un
ds

 C08

oth
er 

ele
ctr

ic t
ec

hn
iqu

es
 H05

fur
nit

ure
 A47

ag
ric

ult
ure

 A01

lay
ere

d p
rod

uc
ts 

B32

sp
ort

s &
 ga

mes
 A63

bu
ildi

ng
 E04

ph
ysi

ca
l o

r c
he

mica
l a

pp
ara

tus
 B01

co
ntr

olli
ng

 & re
gu

lat
ing

 G
05

ea
rth

 or
 ro

ck 
dri

llin
g &

 m
inin

g E
21

4

Notes. This �gure plots the level of misallocation of the top 30 innovative IPC classes, ranked using total patent

output. The level of misallocation is calculated as ln b − lnγ. Positive bars (left end) imply over-investment, and

negative bars imply underinvestment.

5.6 Innovation Hubs

What explains cross-country di�erences in R&D allocative e�ciency? We do not have de�ni-

tive answers, but we can present a conjecture with some empirical support: �rms whose R&D

activities span multiple sectors and technology classes allocate their resources in ways that may

resemble the social planner’s. Because these �rms’ R&D activities build on their own prior in-

novations, they may partially internalize knowledge spillovers through the innovation network.

Notable examples include top innovating �rms such as IBM, Samsung, Sony, and Siemens, which

are termed “innovation hubs.”

Our hypothesis is supported empirically by a strong negative relationship between the pres-

ence of such �rms and the degree of R&D misallocation in each country. Figure 9, Panel (a) shows

the share of patents in 2010–2014 that are �led by the top 10% of innovating �rms in each country.
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Figure 9. Innovation Hubs and R&D Allocative E�ciency

(a) Share of Patents from Top Innovative Firms
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Figure 9. Countries with More Innovation Hubs Have Better R&D Allocations in 2010
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2. Appendix

Table A.18. Unilaterally Optimal R&D Allocations Differ Significantly Across Countries

Countries US Japan China South Korea Germany Russia France UK Canada Netherlands EU

US 0.97 0.90 0.93 0.95 0.84 0.94 0.94 0.92 0.95 0.95
Japan 0.91 0.93 0.94 0.96 0.87 0.94 0.94 0.93 0.94 0.96
China 0.87 0.93 0.95 0.91 0.91 0.91 0.90 0.91 0.90 0.94
South Korea 0.85 0.89 0.84 0.92 0.83 0.90 0.90 0.88 0.89 0.92
Germany 0.77 0.89 0.79 0.82 0.85 0.97 0.96 0.94 0.97 0.99
Russia 0.70 0.76 0.86 0.60 0.57 0.84 0.82 0.90 0.86 0.86
France 0.81 0.89 0.87 0.73 0.73 0.76 0.98 0.94 0.97 0.98
UK 0.84 0.89 0.86 0.73 0.73 0.76 0.99 0.94 0.97 0.98
Canada 0.78 0.88 0.88 0.72 0.71 0.84 0.97 0.96 0.95 0.95
Netherlands 0.83 0.89 0.87 0.74 0.72 0.76 0.98 0.97 0.96 0.97
EU 0.87 0.96 0.91 0.82 0.90 0.74 0.95 0.95 0.93 0.94

Table A.19. Unilaterally Optimal R&D Allocations for US is Highly Correlated over Time

Time Period 2020 2010 2000 1990 1980

2020 1.00 0.99 0.98 0.98
2010 0.99 0.99 0.98 0.98
2000 0.97 0.97 1.00 0.99
1990 0.96 0.94 0.99 1.00
1980 0.94 0.93 0.99 1.00

5

Notes. Panel (a) of this �gure shows the share of patents �led by the top 10% of innovative �rms in each country

between 2010–2014 (innovative �rms are ranked using patent output). Panel (b) plots the misallocation measure

against the measure of concentration in Panel (a).

The �gure shows that R&D activities are more concentrated in Japan, the U.S., and Sweden, as the

top 10% of innovating �rms in these economies account for close to 90%, 80%, and 70% of patents,

respectively. By contrast, R&D activities are least concentrated in Spain, India, and Australia.

Panel (b) of Figure 9 plots the misallocation measure (γ ′ (lnγ − ln b)) against the share of

patents accounted for by the top 10% of innovating �rms. We �nd a strongly negative relation-

ship (slope -1.4, t-statistic -2.1). This evidence suggests that the market failure in R&D resource

allocation could be partially mitigated if innovation hub �rms thrive.

6 Conclusion

We study optimal cross-sector allocation of R&D resources in an endogenous growth model fea-

turing an innovation network. We provide closed-form solutions for the optimal path of R&D

resource allocation, and we show a planner valuing long-term growth (i.e., with low discount

rates) should allocate more R&D toward key sectors that are central in the innovation network,

but the incentive is muted in open economies that bene�t more from foreign knowledge spillovers.

We show the relative entropy of actual R&D allocation from the optimal allocation maps into a

su�cient statistic for the potential welfare gains from reallocating R&D optimally.

To empirically evaluate R&D allocative e�ciency across countries and over time, we build a

global innovation network based on over 30 million global patents and compile comprehensive

data on sectoral production, �nal use, and, importantly, R&D resource allocation for major in-

novative economies. We �nd that our model-implied optimal R&D resource allocation explains
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real allocations in the data, particularly for countries generally perceived as innovative, such as

the U.S., Japan, Germany, and more recently China and South Korea. However, there remains

signi�cant room to improve. Improving R&D allocations could generate substantial welfare im-

provements across the globe. For the U.S., reallocating R&D resources to Japan’s e�ciency level

would increase consumption-equivalent welfare by 19.6% in 2010. We believe our framework can

be adopted to explore future questions about R&D allocation.
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A Proofs

A.1 Proof of Lemma 1: Optimal Labor Allocation
The planner’s problem is

V ∗ ({qi0}) ≡ max
{`it,sit}

∫ ∞

0

e−ρt
K∑

i=1

βi ln yit dt,

subject to constraints (3), (4), (5), and (6). Substituting using (3) and (4), the objective can be

re-written as

V ∗ ({qi0}) ≡ max
{`it,sit}

∫ ∞

0

e−ρt
K∑

i=1

βi ln q
ψ
it`it dt.

The FOC with regard to `it gives:
βi
`it

=
βj
`jt

. Therefore, for all t, `it = βi ¯̀ for each sector i.

A.2 Proof of Proposition 1: Optimal R&D Allocation in the Baseline
Model

The social planner’s problem is

max
{γt} s.t. γ′t1=1∀t

∫ ∞

0

e−ρtβ′ ln qt dt

s.t. d ln qt/dt = λ · (lnη + ln s̄+ lnγt + (Ω− I) ln qt) ,

The control variable is γt and the state variable is qt. Denote the co-state variables as µt. The

current-value Hamiltonian writes

H(γt, qt,µt, ζ) = β′ ln qt + λµ′t (lnη + ln s̄+ lnγt + (Ω− I) ln qt) + ζ(1− γ ′t1).

For notational simplicity we suppress dependence on time for the control, state, and co-state

variables:

H({γi}, {qi}, {µi}, ζ, t) =
∑

i

βi ln qi + ζ(1−
∑

i

γi)

+λ
∑

i

µi

(
ln ηi + ln s̄+ ln γi +

∑

j

ωij ln qj − ln qi

)

By the maximum principle

Hγi = 0⇐⇒ λµi
γi

= ζ ∀i (A1)

Hln qi = ρµi − µ̇i ⇐⇒ βi − λµi + λ
∑

j

µjωji = ρµi − µ̇i (A2)
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First, we show that the transversality condition limt→∞ e−ρtH({γi}, {qi}, {µi}, ζ, t) = 0 im-

plies µ̇i = 0 for all i. It is then immediate that the optimal R&D allocation γ is time invariant.

Note the matrix formula of equation (A2) is

µ̇t = [(ρ+ λ)I − λΩ′]µt − β (A3)

Then

µt = e[(ρ+λ)I−λΩ′]tµ0 −
(∫ t

0

e[(ρ+λ)I−λΩ′](t−s) ds

)
β

= e[(ρ+λ)I−λΩ′]tµ0 −
(
e[(ρ+λ)I−λΩ′]t − I

)
[(ρ+ λ)I − λΩ′]

−1
β.

By transversality,

0 = lim
t→∞

e−ρtµt

= lim
t→∞

e[λ(I−Ω′)]t
[
µ0 − [(ρ+ λ)I − λΩ′]

−1
β
]
.

Hence it must be the case that µ0 = [(ρ+ λ)I − λΩ′]
−1
β. Plugging it to the explicit solution of

µt and then back to (A3), we can get µ̇t = 0. Hence µt and γt are time invariant.

We then can calculate γ. First obtain µ directly from FOC (A3):

(ρ+ λ)µ′t

(
I − Ω

1 + ρ/λ

)
= β′ ⇐⇒ µ′t =

1

ρ+ λ

(
I − Ω

1 + ρ/λ

)−1

.

According to Equation (A1), γ is proportional to µ and subject to

∑
i γi = 1. We can then �nd γ:

γ ′ =
ρ

ρ+ λ
β′
(
I − Ω

1 + ρ/λ

)−1

,

since

ρ

ρ+ λ
β′
(
I − Ω

1 + ρ/λ

)−1

1 =
ρ

ρ+ λ
β′
( ∞∑

s=0

(
Ω

1 + ρ/λ

)s
1

)

=
ρ

ρ+ λ

∞∑

s=0

(
1

1 + ρ/λ

)s

= 1,

as desired.

A3



A.3 Proof of Lemma 2: EconomicGrowthRateAlong a BalancedGrowth
Path

Consider a BGP in which R&D allocation shares follow the vector b and the growth rate of sectoral

knowledge stock is time-invariant. The law of motion for stock vector is

d ln qt/dt = λ · (lnη + ln s̄+ ln b+ (Ω− I) ln qt).

Taking derivative with respect to time,

0 = λ (Ω− I)
d ln qt

dt
,

implying that the vector of sectoral growth rates
d ln qt

dt
is the right-Perron eigenvector of Ω. Be-

cause Ω is a row-stochastic matrix, this implies that
d ln qt

dt
must be a constant vector, meaning the

knowledge stock in every sector must grow at the same rate gq (b). Hence,

gq(b)1 =
d ln qt

dt
= λ · (lnη + ln s̄+ ln b+ (Ω− I) ln qt) . (A4)

Left-multiply by the centrality a′ of Ω on both sides:

gq (b) = a′ · g (b) 1

= λ · (a′ lnη + a′ · 1 ln s̄+ a′ ln b+ a′(Ω− I) ln qt)

= λ · (a′ lnη + ln s̄+ a′ ln b)

= const + λ · a′ ln b.

The third equation is based on the properties of the innovation centrality vector: a′ = a′Ω and∑K
i=1 ai = 1. That gy (b) = ψ · gq (b) is immediate from the production function yi = qψi `i.

A.4 Proof of Proposition 2

Starting from γ ′ = ρ
ρ+λ
β′
(
I − Ω

1+ρ/λ

)−1

, right-multiply both sides by
ρ+λ
λ

(
I − Ω

1+ρ/λ

)
to get

γ ′
(
ρ+ λ

λ
I −Ω

)
=
ρ

λ
β′ ⇐⇒ γ ′ (I −Ω) +

ρ

λ
(γ ′ − β′) = 0′.

Taking the limit as ρ/λ → 0, γ ′ (I −Ω) → 0 implies γ → a; taking the limit as ρ/λ → ∞,

γ → β, as desired.

A.5 Proof of Proposition 3: Welfare Impact of R&D Reallocation
The law of motion for knowledge stock ln q under R&D allocation b is

d ln q

dt
= λ (lnη + ln s̄ · 1 + ln b+ (Ω− I) ln q)

A4



Let a denote the left-eigenvector centrality of Ω (normalized to sum to one). We separately an-

alyze a′ ln qt, i.e., the centrality-weighted average knowledge stock, and the deviation of knowl-

edge stock from this average, (I − 1a′) ln qt.
9

We �rst show the former always grows at a con-

stant rate even away from a BGP, whereas the latter converges to a constant vector as the economy

converges to a BGP.

From the law of motion, we know

a′
d ln q

dt
= λ (a′ lnη + ln s̄′ · a′1 + a′ ln b+ a′ (Ω− I) ln q)

= λa′ (lnη + ln s̄ · 1 + ln b)

Hence, given time-invariant R&D allocation b, a′ ln qt always grows at a constant rate (and it

equals to the rate of growth along a BGP) and can be solved in closed-form:

a′ ln qt = a′ ln q0 + λa′ (lnη + ln s̄ · 1 + ln b) t

Note that a′1 = 1; hence (I − 1a′) (ln s̄ · 1) = 0. Let A ≡ 1a′. Note that the row-

stochastic matrix Ω represents a Markov chain, for which a is the stationary distribution, and

A ≡ lims→∞Ωs
. Also note that

(I −A) (Ω− I) = (Ω− I) (I −A)

= − (I −Ω +A) (I −A)

Left-multiply the law of motion by (I −A), substitute the above, and let l̃n qt ≡ (I −A) ln qt,
we get

dl̃n qt
dt

= λ (I −A) (lnη + ln b)− λ (I −Ω +A) l̃n qt

We can integrate the ODE system:

l̃n qt = e−λ(I−Ω+A)t

[
˜ln q0 + λ

∫ t

0

eλ(I−Ω+A)s (I −A) (lnη + ln b) ds

]

= e−λ(I−Ω+A)t˜ln q0 + (I −Ω +A)−1 (I − e−λ(I−Ω+A)t
)

(I −A) (lnη + ln b)

Which implies that there’s a closed-form solution for the sectoral knowledge stock along the entire

path of the economy:

ln qt = l̃n qt +A ln qt

= A ln q0 + λA (lnη + ln s̄ · 1 + ln b) t

+e−λ(I−Ω+A)t˜ln q0 + (I −Ω +A)−1 (I − e−λ(I−Ω+A)t
)

(I −A) (lnη + ln b)

Starting from the same initial knowledge stock q0 but with two di�erent time-invariant R&D

9
We separate these two objects because, the matrix (I −Ω) is not invertible, but (I −Ω + 1a′) generically is.

The proof shown below utilizes the invertibility of (I −Ω + 1a′) to solve for (I − 1a′) ln qt.
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allocations b̃ and b, we have the following di�erence in knowledge stock over time:

ln qt

(
b̃
)
− ln qt (b) = A ln qt

(
b̃
)
−A ln qt (b)

+l̃n qt

(
b̃
)
− l̃n qt (b)

=
[
Aλt+ (I −Ω +A)−1 (I − e−λ(I−Ω+A)t

)
(I −A)

] (
ln b̃− ln b

)

Note ∫ ∞

0

e−ρtλt dt = −1

ρ
e−ρtλt

∣∣∞
0

+

∫ ∞

0

1

ρ
e−ρtλ dt =

λ

ρ2

The di�erence in consumer welfare under two time-invariant paths of R&D allocations is

V
(
q0; {`t} , b̃

)
− V (q0; {`t} , b)

= ψβ′
∫ ∞

0

e−ρt
[
ln qt

(
b̃
)
− ln qt (b)

]
dt

= ψβ′
∫ ∞

0

e−ρt
[
Aλt+ (I −Ω +A)−1 (I − e−λ(I−Ω+A)t

)
(I −A)

]
dt
(

ln b̃− ln b
)

=
ψλ

ρ2
β′A

(
ln b̃− ln b

)

+ψβ′ (I −Ω +A)−1

[
1

ρ
I −

∫ ∞

0

(
e−((ρ+λ)I−λ(Ω−A))t

)
dt

]
(I −A)

(
ln b̃− ln b

)

= ψβ′
[
λ

ρ2
A+ (I −Ω +A)−1

[
1

ρ
I − 1

ρ+ λ

(
I − λ

ρ+ λ
(Ω−A)

)−1
]

(I −A)

](
ln b̃− ln b

)

= ψβ′
[
λ

ρ2
A+

1

ρ
(I −Ω +A)−1

[
λ

ρ+ λ
(I − (Ω−A))

(
I − λ

ρ+ λ
(Ω−A)

)−1
]

(I −A)

](
ln b̃− ln b

)

=
ψ

ρ
β′
[
λ

ρ
A+

λ

ρ+ λ

(
I − λ

ρ+ λ
(Ω−A)

)−1

(I −A)

](
ln b̃− ln b

)

=
ψ

ρ
β′

λ

ρ+ λ

(
I − λ

ρ+ λ
(Ω−A)

)−1 [(
I − λ

ρ+ λ
(Ω−A)

)
ρ+ λ

ρ
A+ (I −A)

](
ln b̃− ln b

)

=
ψ

ρ2
β′

λ

ρ+ λ

(
I − λ

ρ+ λ
(Ω−A)

)−1

[ρI + λA]
(

ln b̃− ln b
)

Note

(ρI + λA)−1 =
1

ρ

(
I − 1

1 + ρ/λ
A

)
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To see this,

(ρI + λA)
1

ρ

(
I − 1

1 + ρ/λ
A

)

=
1

ρ

(
ρI + λA− (ρI + λA)

1

1 + ρ/λ
A

)

= I +
1

ρ
(λA− λA)

= I

Hence,

V
(
q0; {`t} , b̃

)
− V (q0; {`t} , b)

=
ψ

ρ
β′

λ

ρ+ λ

((
I − 1

1 + ρ/λ
A

)[
I − λ

ρ+ λ
(Ω−A)

])−1 (
ln b̃− ln b

)

=
ψ

ρ
β′

λ

ρ+ λ

(
I − λ

ρ+ λ
(Ω−A)− 1

1 + ρ/λ
A

)−1 (
ln b̃− ln b

)

=
ψ

ρ
β′

λ

ρ+ λ

(
I − 1

1 + ρ/λ
Ω

)−1 (
ln b̃− ln b

)

=
ψλ

ρ2
γ ′
(

ln b̃− ln b
)
,

as desired.

A.6 Proof of Proposition 4: Consumption-EquivalentWelfareGains from
Adopting the Optimal R&D

For a given consumption path {yt}, the welfare gain under the alternative consumption path

{L · yt} is

∫
e−ρt lnL dt = lnL

ρ
. The result thus immediately follows Proposition 3.

A.7 Proof of Proposition 5: General Functional Forms and Endogenous
Innovation Network

Consider the economic environment outlined in Section 2.5, with preferences

∫∞
0
e−ρt lnY

({
qψit`it

})
dt

and knowledge stock law of motion

d ln qit/ dt = f (ln (bits̄) + lnXi ({qjt})) ∀i,

where `it is the measure of production workers allocated to each variety in sector i at time t.
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Consider the economy initially at t = 0 in a BGP with R&D allocation b. De�ne

βi ≡
∂ lnY ({yjt})

∂ ln yit

∣∣∣
t=0
, ωij ≡





∂ lnXi({qkt})
∂ ln qjt

∣∣∣
t=0

if i 6= j

1 + ∂ lnXi({qit})
∂ ln qit

∣∣∣
t=0

otherwise.

β ≡ [βi] and Ω ≡ [ωij] are the consumption and innovation spillover elasticities evaluated in

the initial BGP. Note that (1) Xi (·) being homogeneous-of-degree-zero with positive cross-sector

spillovers and (2) |∂ lnXi (·) /∂ ln qjt| ≤ 1∀i, j jointly imply that ωij ≥ 0 for all i, j. Let λ ≡ f ′ (·)
denote the slope of the function f , and de�ne γ ′ = ρ

ρ+λ
β′
(
I − Ω

1+ρ/λ

)−1

.

We now derive the �rst-order welfare impact of perturbing R&D allocation. Let V (ln q0; ln b)
denote the welfare under log-R&D allocation ln b. Formally, we show that the Gateaux derivative

of welfare with respect to log R&D allocation ln b in the direction of h is

lim
α→0

V (ln q0; ln b+ αh)− V (ln q0; b)

α
=
ψλ

ρ2
γ ′h.

Given log-R&D allocation ln b+ αh, the law of motion for knowledge stock satis�es

d ln qt
dt

= f (ln b+ αh+ lnχ ({ln qt}))

∂2 ln qt
∂α∂t

= λh+ λ (Ω− I)
∂ ln qt
∂α

=⇒ ∂ ln qt
∂α

= (I −Ω)−1 [I − e−λ(I−Ω)t
]
h
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lim
α→0

V (ln q0; ln b+ αh)− V (ln q0; b)

α

=

∫
e−ρt

∂ lnY (ψ ln qt)

∂ ln qt

∂ ln qt
∂α

dt

= ψβ′ (I −Ω)−1

∫
e−ρt

[
I − e−λ(I−Ω)t

]
dth

= ψβ′ (I −Ω)−1

[
1

ρ
I −

∫
e−((ρ+λ)I−λΩ)t dt

]
h

= ψβ′ (I −Ω)−1

[
1

ρ
I − 1

ρ+ λ

(
I − λ

ρ+ λ
Ω

)−1
]
h

= ψβ′ (I −Ω)−1

[
1

ρ

(
I − λ

ρ+ λ
Ω

)
− 1

ρ+ λ
I

](
I − λ

ρ+ λ
Ω

)−1

h

=
ψ

ρ
β′ (I −Ω)−1

[
λ

ρ+ λ
I − λ

ρ+ λ
Ω

](
I − λ

ρ+ λ
Ω

)−1

h

=
ψλ

ρ2

ρ

ρ+ λ
β′
(
I − λ

ρ+ λ
Ω

)−1

h

=
ψλ

ρ2
γ ′h,

as desired.

A.8 Proof of Proposition 6: Optimal R&D in the Presence of Foreign
Spillovers

First, note that given output yt and the price of imports pft , consumption, export, and import must

solve

C̄∗
(
yt, p

f
t

)
≡ max

cdt ,c
f
t

C
(
cdt , c

f
t

)
s.t. yt − cdt = pft c

f
t . (A5)

Since C (·) features constant-returns-to-scale, we can re-write the maximized consumption ag-

gregator as C̄∗
(
yt, p

f
t

)
= ytC∗

(
pft

)
for some function C∗. Hence, for any qt, {`it} are chosen

to maximize �ow output; thus the optimal worker allocation features `it/¯̀ = βi as in the closed

economy.

We next characterize the optimal R&D allocation. Let Θ ≡ Ω ◦X . Given the law of motion

for sectoral knowledge stock, we can solve for the evolution of knowledge stock in closed form

as a function of R&D allocation bt:

ln qt = eλ(Θ−I)t

[
ln q0 + λ

∫ t

0

e−λ(Θ−I)s
(
(Ω−Θ) ln qfs + lnη + ln s̄+ ln bs

)
ds

]
. (A6)
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The optimal R&D allocation is

{γt} = arg max
{bs}

∫ ∞

0

e−ρt ln C̄∗
(
yt ({bs}) , pft

)
dt

= arg max
{bs}

∫ ∞

0

e−ρt ln yt ({bs}) dt

= arg max
{bs}

∫ ∞

0

e−ρtβ′ ln qt ({bs}) dt

= arg max
{bs}

β′
∫ ∞

0

e−ρt
[
λ

∫ t

0

e−λ(I−Θ)(t−s) ln bs ds

]
dt.

The optimal R&D allocation therefore coincides with the solution to the following problem:

arg max
{bs}

∫ ∞

0

e−ρtβ′mt dt

s.t. ṁt = λ (Θ− I)mt + λ ln bt, m0 given,

which can be solved in closed form by forming the Hamiltonian, following a similar procedure as

in the proof for Proposition 1. The solution features

γ ′ = ξ−1 ρ

ρ+ λ
β′
(
I − Ω ◦X

1 + ρ/λ

)−1

, ξ ≡ ρ

ρ+ λ
β′
(
I − Ω ◦X

1 + ρ/λ

)−1

1,

as desired.

A.9 Proof of Proposition 7: Welfare Impact of R&D in the Presence of
Foreign Spillovers

Starting from an initial condition q0, a path of foreign knowledge and import prices

{
qft , p

f
t

}
,

and a path of worker allocation {`t}, the welfare di�erences between an economy with optimal

R&D allocation γ and an economy with time-invariant allocation b is

V (γ)− V (b) =

∫ ∞

0

e−ρt
[
ln C̄∗

(
yt (γ) , pft

)
− ln C̄∗

(
yt (b) , pft

)]
dt,

where C̄∗ is de�ned in (A5). Following the proof to Proposition 6, C̄∗
(
yt, p

f
t

)
= ytC∗

(
pft

)
; hence

the welfare di�erences can be re-written as

V (γ)− V (b) =

∫ ∞

0

e−ρt [ln yt (γ)− ln yt (b)] dt.

Since ln yt is additive in ψβ′ ln qt, we can re-write the welfare di�erences in terms of the dis-

counted integral of β-weighted di�erences in knowledge stock induced by the two di�erent R&D
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allocation vectors. By (A6), we can re-write the welfare di�erences as

V (γ)− V (b) = ψβ′
∫ ∞

0

e−ρt
[
λ

∫ t

0

e−λ(I−Θ)(t−s) ds

]
dt (lnγ − ln b) ,

where Θ ≡ Ω ◦X . To simplify the integral we follow the proof to Proposition 3:
10

V (γ)− V (b) = ψβ′
∫ ∞

0

e−ρt
[
λ

∫ t

0

e−λ(I−Θ)(t−s) ds

]
dt (lnγ − ln b) ,

= ψβ′ (I −Θ)−1

(∫ ∞

0

e−ρt
[
I − e−λ(I−Θ)t

]
dt

)
(lnγ − ln b)

=
ψ

ρ
β′ (I −Θ)−1

(
I − ρ

ρ+ λ

(
I − 1

1 + ρ/λ
Θ

)−1
)

(lnγ − ln b)

=
ψλ

ρ2

ρ

ρ+ λ
β′
(
I − 1

1 + ρ/λ
Θ

)−1

(lnγ − ln b)

=
ψλ

ρ2

ρ

ρ+ λ
β′
(
I − 1

1 + ρ/λ
Θ

)−1

1

︸ ︷︷ ︸
≡ξ

β′
(
I − 1

1+ρ/λ
Θ
)−1

β′
(
I − 1

1+ρ/λ
Θ
)−1

1
︸ ︷︷ ︸

≡γ′

(lnγ − ln b)

=
ψλ

ρ2
ξγ ′ (lnγ − ln b) .

For a given consumption path

{
C̄∗
(
yt, p

f
t

)}
, the welfare gain under the alternative consumption

path

{
L · C̄∗

(
yt, p

f
t

)}
is

∫
e−ρt lnL dt = lnL

ρ
. The consumption-equivalent welfare gains from

adopting the optimal R&D allocation is thus

L (b, ξ) = exp

(
ψλ

ρ
ξγ ′ (lnγ − ln b)

)
,

as desired.

B Theoretical Extensions

B.1 Three-Sector Example
To demonstrate Propositions 1 and 2, consider the following three-sector example, where knowl-

edge �ows from sector 1 to sector 2 and from sector 2 to sector 3. Sector 1 can thus be interpreted

as the “upstream” sector of knowledge �ows, and sector 3 is the knowledge “downstream.” To

ensure the knowledge aggregator χit has constant returns to scale in every sector, we specify that

10
Note that I − Θ is generically invertible—the economy with foreign spillovers exhibit aggregate decreasing-

returns-to-scale in domestic R&D—so the proof here is simpler than in the baseline model.
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knowledge in sector 1 also bene�ts itself. For simplicity, we assume the consumer values goods

from each sector equally, with consumption share βi = 1/3 for all i.

1 Upstream

3 Downstream

2 Midstream

Direction of 
knowledge flow1 Upstream

3 Downstream

2 Midstream

Direction of 
knowledge flow

Ω =




1 0 0
1 0 0
0 1 0


 , β =




1/3
1/3
1/3


 .

1.4.1 Optimal Transition Dynamics

We can actually characterize the optimal convergence path towards the optimal BGP in
closed form. Let n̄t ≡

∑
βj lnnjt be the [consumption-share weighted] average log-knowledge

stock, and let ñt ≡ [lnnjt − n̄t] denote the vector of log-deviation of sectoral knowledge stock
relative to average. Along a BGP, ñt is time-invariant. We know along the optimal growth
path

ln ṅit/nit = ln η + φ (ln γi + ln s̄) +
∑

j

ωij lnnjt − lnnit

thus
˙̃nt = γ̃ − β′γ̃ + (Ω− I) ñt

which we can solve in closed form:

ñt = e−(I−Ω)tñ0 −
(
e−(I−Ω)t − I

)
(I −Ω + 1β′Ω)

−1
(γ̃ − β′γ̃)

We know in the long run,

ñSP ≡ lim
t→∞

ñt = (I −Ω + 1β′Ω)
−1

(γ̃ − β′γ̃)

Hence

ñt − ñSP = e−(I−Ω)t
(
ñ0 − ñSP

)

= Ue−ΛtV
(
ñ0 − ñSP

)

where we conduct eigendecomposition (I −Ω) = UΛV . Hence, the second-largest eigen-
vector of Ω is the upperbound of the half-life for the knowledge stock to converge towards
the optimal BGP under optimal interventions. The actual speed of convergence depends on
the initial deviation of the state variable relative to the steady-state

(
ñ0 − ñSP

)
.

The optimal policy can be decentralized by a sequence of taxes/subsidies. We may be
able to solve the path of taxes/subsidies in closed form. Note that the optimal subsidies
apply only to R&D; we do not want to tax production or profits; such taxes will distort the
cross-sector allocation of production inputs, which is already efficient.

10

The socially optimal R&D allocations depend on the e�ective discount rate ρ/λ and should

follow, according to Proposition 1,

γ ′ =
ρ

ρ+ λ
β′
(
I − Ω

1 + ρ/λ

)−1

=
[

1+(1+ρ/λ)+(1+ρ/λ)2

3(1+ρ/λ)2
ρ/λ+ρ/λ(1+ρ/λ)

3(1+ρ/λ)2
ρ/λ

3(1+ρ/λ)

]
.

When the e�ective discount rate ρ/λ is lower, more resources should be directed to upstream

sector 1 and fewer to downstream sector 3. A myopic planner (ρ/λ → ∞) chooses γ1 = γ3; as

the when ρ/λ = 1, γ1/γ3 ≈ 3.5; when ρ/λ = 0.1, γ1/γ3 ≈ 30.1.

B.2 Embedding Input-Output Linkages into Production Functions
We now expand on Section 2.7.1 and introduce input-output linkages into the baseline model. As

discussed in the main text, for the optimal R&D allocation γ ′ ∝ β′
(
I − Ω

1+ρ/λ

)−1

, the presence

of a production network requires a di�erent construction for the β vector, but the innovation

network Ω term is una�ected. Formally, the β vector should capture the elasticity of aggregate

consumption with respect to the knowledge stock in each sector; in the presence of a production

network, it should re�ect not only the consumer preferences but also the production network

structure. With this adjustment, our main results continue to hold in this environment.

Speci�cally, suppose the production of good i requires other goods as intermediate inputs:

ln yit =
∑K

j=1σij lnmijt + αi ln q
ψ
it`it dν, αi +

∑K
j=1σij = 1, (A7)

where mijt is the quantity of good j used for the production of good i, αi is sector i’s output

elasticity to value-added, and σij is sector i’s output elasticity to input j. The baseline model is a

special case with σij = 0 for all i, j. When an equal amount of labor `it is allocated to each variety

within a sector, production function (A7) takes the standard form in the canonical production

network model (Acemoglu et al., 2012):

yit =
(
qψit`it

)αi∏K
j=1 m

σij
ijt . (A8)

The market clearing condition for sectoral good follows

yjt =
∑

i

mijt + cjt. (A9)
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The aggregate consumption bundle follows:

ln yt =
K∑

i=1

βi ln cit. (A10)

Consider the problem of choosing worker allocation to maximize �ow consumption:

ln y∗ (qt) ≡ max
{`it}

K∑

i=1

βi ln cit

subject to (A9) and (A8). Let Σ ≡ [σij] denote the matrix of input-output elasticities. Standard

results in the production networks literature (e.g., see Acemoglu et al., 2012 and Liu, 2019) imply

ln y∗ (qt) = const + ln ¯̀+
∑

i

β̂i ln qit,

where β̂i ≡ αi
[
β′ (I −Σ)−1]

i
is the product between sectoral value-added elasticity αi and the

i-th entry of the in�uence vector β′ (I −Σ)−1
. β̂i can be interpreted as the elasticity of aggregate

output with respect to sectoral knowledge stock. Hence, results in the main text extend intuitively

to this setting with input-output linkages: the optimal worker allocation follows the vector β̂, and

the optimal R&D allocation γit ≡ sit/s̄ follows γ ′ ∝ β̂′
(
I − Ω

1+ρ/λ

)−1

.

B.3 Semi-Endogenous Growth
Our baseline model features endogenous growth: a positive growth rate of aggregate output along

a balanced growth path in the absence of population growth. This is because the R&D technology

features aggregate constant-returns-to-scale in sectoral knowledge stock. We now expand on

Section 2.7.2 and embed our innovation network formulation into a semi-endogenous growth

setting, with a constant growth rate in the total measure of scientists s̄t = s̄0e
ḡt

. We show that

the optimal R&D allocation follows γ ′ ∝ β′
(
I − Ω

1+κ+ρ/λ

)−1

, and the consumption-equivalent

welfare impact of adopting the optimal allocation is L (b) = exp
(

λ
ρ+κλ

γ ′ (lnγ − ln b)
)

.

Speci�cally, replace the knowledge stock evolution equation (5) with

q̇it/qit = λ ln
(
nit/q

1+κ
it

)
,

where κ ≥ 0 captures the rate at which proportional improvements in knowledge are getting

harder to �nd (Bloom et al. 2020, Jones 2022). The knowledge law of motion (9) becomes

d ln qt
/

dt = λ · (lnη + ln st + ḡt+ (Ω− (1 + κ) I) ln qt) .

Integrating the ODE system over time, we get

ln qt = eλ(Ω−(1+κ)I)t

[
ln q0 + λ

∫ t

0

e−λ(Ω−(1+κ)I)u (lnη + ln su + ḡu) du

]
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For given initial levels of knowledge stock and path of worker allocation, the di�erence in

welfare under two R&D allocations b̃ and b is

V
(
q0; {`t} , b̃

)
− V (q0; {`t} , b)

= ψβ′
∫ ∞

0

e−ρt
[
ln qt

(
b̃
)
− ln qt (b)

]
dt

= ψλβ′
∫ ∞

0

e−ρt
[∫ t

0

e−λ((1+κ)I−Ω)(t−u)
(

ln b̃− ln b
)

du

]
dt

= ψβ′ ((1 + κ) I −Ω)−1

(∫ ∞

0

e−ρt
[
I − e−λ((1+κ)I−Ω)t

]
dt

)(
ln b̃− ln b

)

=
ψ

ρ
β′

1

1 + κ

(
I − Ω

1 + κ

)−1
(
I − ρ

ρ+ λ+ λκ

(
I − Ω

1 + κ+ ρ/λ

)−1
)(

ln b̃− ln b
)

=
ψλ

ρ
β′

1

ρ+ λ+ κλ

(
I − Ω

1 + κ+ ρ/λ

)−1 (
ln b̃− ln b

)

=
ψλ

ρ

1

κλ+ ρ

ρ+ κλ

ρ+ λ+ κλ
β′
(
I − Ω

1 + κ+ ρ/λ

)−1 (
ln b̃− ln b

)

It is easy to verify that γ ′ ≡ ρ+κλ
ρ+λ+κλ

β′
(
I − Ω

1+κ+ρ/λ

)−1

sums to one; hence we have

V
(
q0; {`t} , b̃

)
− V (q0; {`t} , b) =

ψ

ρ

λ

ρ+ κλ
γ ′
(

ln b̃− ln b
)
.

Clearlyγ is the optimal allocation, and, analogous to the argument in Section A.6, the consumption-

equivalent welfare impact of adopting the optimal allocation isL (b) = exp
(

ψλ
ρ+κλ

γ ′ (lnγ − ln b)
)

.

B.4 An Illustrative Decentralized Equilibrium
In an innovation network, knowledge is a public good, as knowledge creation bene�ts subsequent

R&D in other sectors and all future periods. To the extent that innovators do not fully internalize

such future bene�ts, a decentralized market does not implement the optimal R&D allocation. To

demonstrate the potential ine�ciency, in this section we construct a decentralized equilibrium in

which innovators conduct R&D only in pursuit of pro�ts, disregarding any bene�cial spillovers

their R&D activities may provide in the future. As we show, the decentralized allocation of R&D

resources follows the consumption elasticities β along a BGP, which can be e�cient only if the

society is completely myopic (ρ/λ→∞).

It is important to note that our decentralized equilibrium lacks many real-world features of

the market for innovation (e.g., multi-sector �rms, mergers and acquisitions, and patent licens-

ing). This is intentional: the goal of this section is not to capture quantitative realism but to

illustrate as clearly as possible the potential ine�ciency of decentralized R&D decisions given

knowledge spillovers. By comparing the R&D allocations in the data to the �rst-best, our notion

of allocative e�ciency—measured by the consumption-equivalent welfare impact of reallocating

R&D optimally—does not require that we take a stance on �rms’ equilibrium conduct; instead,
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it has the advantage of directly calculating the welfare impact of reallocating R&D based on the

economic environment.

We demonstrate the ine�ciency of decentralized equilibrium in the economic environment

with general functional forms as described in Section 2.5. Speci�cally, consumption aggregator is

yt = Y ({yit}) constant-returns-to-scale, and corss-sector knowledge spillover follows a general

functionXi ({qjt}) satisfying homogeneous-of-degree-zero with spillovers positive across sectors

(∂ lnXi (·) /∂ ln qjt > 0 for i 6= j) and bounded above (|∂ lnXi (·) /∂ ln qjt| ≤ 1∀i, j). We show

below in Proposition 8 that along a decentralized BGP, R&D allocation follows `i/¯̀ = βi ≡
∂ lnY({yit})
∂ ln yit

, which is generically ine�cient given Proposition 5.

Speci�cally, suppose each sectoral good consists of a continuum of intermediate varieties:

ln yit =

∫ 1

0

ln
[
qψit (ν) yit (ν)

]
dν (A11)

where each intermediate variety is produced by a distinct monopolist one-for-one from labor.

Di�erent vintages of the same variety are perfect substitutes. Because the most recent vintage’s

quality is eλ proportionally higher than the next best vintage, the monopolist conducts limit pric-

ing and charges a markup eλψ.
11

No vintages with dominated quality are produced in equilibrium.

In each sector, innovation is carried out by a large research intermediary (“R&D �rm”), who

hire scientists to conduct R&D and generate new innovations with Poisson arrival rateφ (sitXi ({qjt})).

Upon a successful innovation, the R&D �rm patents the innovation and sells the patent to a pro-

ducer, who pays for the full value of the patent and becomes the monopolist of that variety until

being replaced by another monopolist when a future successful innovation occurs. The law of

motion for a sector’s knowledge stock is

d ln qit
dt

= f̃ (sitXi ({qjt})) , where f̃ (·) ≡ λ× φ (·).

The representative consumer receives all workers’ and scientists’ income and pro�ts of pro-

ducers and the R&D �rms. Given the initial state variables {qi0}Ki=1, a decentralized equilibrium

is the time path of prices, quantities, and knowledge stocks such that production �rms set prices

to maximize pro�ts, the consumer chooses bundles of goods to consume to maximize utility, and

potential entrants hire scientists for R&D to maximize expected pro�ts. A decentralized BGP is

an equilibrium in which all sectors’ knowledge stock grows at the same constant rate.

Note that when worker allocation is constant across varieties in each sector, `it (ν) = `it ∀ν—

which is true in the decentralized equilibrium, as shown in Proposition 8 below—the economic

environment described here coincides with that in Section 2.5. Following Section 2.5, we let βi ≡
∂ lnY({yit})
∂ ln yit

denote the consumption elasticity with respect to sectoral good i along a decentralized

BGP. This is also the consumer expenditure share on good i.

Proposition 8. In the decentralized BGP, the allocations of R&D and production resources both
follow the consumption elasticities: `it (ν) = `it = βi ¯̀and sit = βis̄.

Proof. We normalize the consumer price index to one for all times t. The consumer spends fraction

11
Note that λ is proportional to the pro�t margin.
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βi of their income on sectoral composite good i, with

pityit = βiyt for all i, t. (A12)

The sectoral composite aggregator (A11) further implies that the total revenue of each variety ν is

also equal to βiyt, and, because each monopolist sets a markup eλψ, we derive the pro�ts in each

sector i as

πit (ν) =
(
1− e−λψ

)
βiyt for all i, t, ν. (A13)

Because all varieties have identical markups, the worker allocation is identical across varieties

within each sector. Given a constant markup across all sectors, the total worker allocation in each

sector is also proportional to the consumption shares βi:

`it (ν) = `it = βi ¯̀ for all i, t, ν. (A14)

Along the BGP, a monopolist in each sector has the same Poisson rate φ̄ to be replaced by an

innovating entrant. The value of a monopolistic �rm is thus

vit ≡
∫∞
t
e−(r+φ̄)(s−t)πis ds, (A15)

where r is the interest rate. Note we have suppressed the index for variety since all varieties have

the same pro�ts and thus the same value within each sector. Because sectoral pro�ts are always

proportional to the consumption shares at all times, we have

vit/vjt = βi/βj for all i, j, t. (A16)

Entrants hire scientists to conduct research in order to become future monopolists. The marginal

value from an additional scientist must be equalized across sectors, further implying

vit
∂φ (sitXi ({qkt}))

∂sit
= wst

where wst is the wage rate of a scientist at time t. Using the fact that vit/vjt = βi/βj , we have

βi
sit

∂φ (sitXi ({qkt}))
∂ ln sit

=
βj
sjt

∂φ (sjtXj ({qkt}))
∂ ln sjt

Further note that
∂φ(sjtXj({qkt}))

∂ ln sjt
= φ′ · Xj ({qkt}) sjt which must be the same across all sectors

along a BGP. Hence we obtain that scientist allocation must also follow the consumption share,

that is, sit/s̄ = βi for all t, as desired.

Intuitively, varieties in a sector with higher consumption share βi have proportionally higher

revenue, employment, and �ow pro�ts. Since the rate at which an innovating entrant replaces a

producing monopolist is the same across all sectors along a BGP, a monopolistic �rm’s value is

also proportional to the consumption share βi of the sector. Because entrants conduct research to

obtain that monopolistic value, the marginal value from an additional scientist must be equalized

across sectors, and the innovation production function (4) thus implies that R&D allocation must

follow sit = βis̄ along the BGP.
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According to Proposition 5, a necessary condition for the decentralized balanced growth path

to be e�cient is for the society to be myopic (with ρ → ∞). While the social planner takes

into account both R&D’s direct e�ect on product quality as well as the in�nite rounds of indirect

network spillover e�ects, the decentralized allocation is driven by �rm pro�ts and thus accounts

only for the direct e�ect, as in�nitesimal �rms cannot monetize the future spillover e�ects of their

own R&D.

B.5 Constrained Optimal R&D Allocations
In some settings, for instance under political or feasibility constraints, a planner may only be able

to reallocate resources across a subset K ⊂ {1, . . . , K} of sectors. We now generalize our results

to such an environment. We show that our earlier results extend naturally: resources among

sectors in K should be allocated proportionally to the unconstrained optimal allocation γ. We

generalize the welfare su�cient statistic to this setting as well.

For a generic allocation vector b, we denote bK as the |K| × 1 allocation vector that sums to

one with entries proportional to b for all sectors in K (i.e., bKi ≡ bi∑
j∈K bj

for i ∈ K).

Proposition 9. Suppose R&D allocations in sectors k 6∈ K are given exogenously and that the plan-
ner can only choose R&D allocations in sectors k ∈ Kwhen solving the planning problem in (7). Along
the entire equilibrium path, the constrained optimal R&D allocation is si = γKi

(
s̄−∑k 6∈K sk

)
for

i ∈ K. The consumption-equivalent welfare gains from adopting the constrained-optimal R&D allo-
cation (instead of allocation b) is LK (b) = exp

(
ψλ
ρ

(∑
j∈K γj

) (
γK
)′ (

lnγK − ln bK
))
.

The Proposition shows that among sectors in which the planner can allocate resources, the

constrained-optimal resource allocation is proportional to the unconstrained-optimal allocationγ.

For the welfare su�cient statistic, note that the relative entropy of bK fromγK,

(
γK
)′ (

lnγK − ln bK
)
,

summarizes the distance relative to the �rst-best allocation among sectors in K. Relative to the

welfare formula (15) for the unconstrained optimal allocation, the new term

∑
j∈K γj ≤ 1 (with

equality when K includes all sectors) re�ects the fact that there is less to be gained when the

planner can reallocate resources across fewer sectors.

Proof. Let sK ≡ s̄−∑k/∈K sk denote the available resource the planner can allocate among sectors

inK, and let γKi denote the constrained-optimal share of sK allocated to sector i. That γKi is time-

invariant follows from the same proof as Proposition 3. γK is thus the solution to

γK = arg max
{δi}i∈K

∑

i∈K
γi (ln δi − ln bi) s.t.

∑

i∈K
δi = 1.

It is thus immediate that γKi = γi∑
j∈K γj

. By Proposition 3, the welfare gains from adopting the

constrained optimal allocation is

ψλ

ρ2

(∑

i∈K
γi

(
ln γKi

(∑

i∈K
bi

)
− ln bKi

(∑

i∈K
bi

))
+
∑

i/∈K
γi (ln bi − ln bi)

)
,

the consumption-equivalent gains then simpli�es to the formula in the Proposition.
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The Proposition also holds in an environment with foreign spillovers, which we state below.

Proposition 10. Consider an open economy with R&D self-su�ciency ξ and given paths of for-
eign knowledge and relative import prices

{
qft , p

f
t

}∞
t=0

. Suppose R&D allocations in sectors k 6∈ K
are given exogenously and that the planner can only choose R&D allocations in sectors k ∈ K
when solving the planning problem in (20). Along the entire equilibrium path, the constrained op-
timal R&D allocation is si = γKi

(
s̄−∑k 6∈K sk

)
for i ∈ K. The consumption-equivalent welfare

gains from adopting the constrained-optimal R&D allocation (instead of allocation b) is LK (b) =

exp
(
ψλ
ρ
ξ
(∑

j∈K γj
) (
γK
)′ (

lnγK − ln bK
))
.

B.6 Optimal R&D Allocation in Large Open Economies
In the open economy environment presented in the main text, we studied the problem of a do-

mestic planner who takes the paths of import prices and foreign knowledge as given. In this

appendix section, we construct an environment in which a domestic planner internalizes the im-

pact of domestic allocations on foreign variables. This analysis is empirically relevant for studying

the R&D allocation in the U.S., a country that generates signi�cant knowledge spillovers to other

economies.

Consider an environment with two economies, home (U.S.) and foreign (rest of the world).

The home consumer has preferences

V =
∫∞

0
e−ρt

(
σh ln chht +

(
1− σh

)
ln chft

)
dt, (A17)

where chht is the home consumption of home goods and chft is the home consumption of foreign

goods. Home goods is a Cobb-Douglas aggregator over sectoral composite goods, which are pro-

duced from labor (equations 2 and 3). We can simplify the home production functions as

ln yht =
∑

i

βi
(
ψ ln qhit + ln `hit

)
. (A18)

Home can import the foreign goods chft by exporting unconsumed home goods

(
yht − chht

)
. Home

innovation production function follows

nhit = shitχ
h
it, where χhit = ηhi

∏K
j=1

[(
qhjt
)xhij (qfjt

)1−xhij
]ωij

, (A19)

and the law of motion for home knowledge stock is

d ln qhit
dt

= λ ln
(
nhit/q

h
it

)
. (A20)

Home is endowed with workers
¯̀h

and scientists s̄h. The foreign economy has analogous prefer-

ences and technologies, swapping superscripts h and f .

We study the home planner’s problem of allocating workers and scientists to maximize home

welfare, while taking the time path of foreign allocations

{
`ft , s

f
t

}
as given and decentralizing
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international trade. Given home and foreign output yht , yft , Cobb-Douglas preferences imply that

the home consumer spends

(
1− σh

)
fraction of income on home imports, and that the foreign

consumer spends

(
1− σf

)
fraction of income on home exports. Trade balance therefore implies

that home consumption of foreign goods is

(
1− σf

)
yft . Hence, given �ow output yht , y

f
t , the

home consumer’s �ow utility is

σh ln chht +
(
1− σh

)
ln chft = σh lnσhyht +

(
1− σh

)
ln
(
1− σf

)
yft .

Substituting into (A17), we can write the home planning problem as

V ∗
({
`ft , s

f
t

}∞
t=0

)
≡ max
{shit,`hit}

∫∞
0
e−ρt

(
σh ln yht +

(
1− σh

)
ln yft

)
dt, (A21)

subject to the innovation production functions (A20 and A19), goods production function (A18),

and the corresponding foreign innovation and goods production functions

d ln qfit
dt

= ln ηfi + ln sfit +
K∑

j=1

ωij

(
xfij ln qfjt +

(
1− xfij

)
ln qhjt

)
,

ln yft =
∑

i

βi

(
ln qfit + ln `fit

)
,

with market clearing conditions

∑
i s
h
it = s̄h and

∑
i `
h
it = ¯̀h

.

To solve the home planner’s problem, �rst consider a hypothetical world as an integrated

economy in which resources can freely move across countries, and where the home planner can

choose worker and scientist allocations in both economies; then, our closed economy analysis in

Section 2.2 exactly applies: the solution would be characterized exactly by our closed economy

results in Lemma 1 and Proposition 1, recognizing that there areK×2 sectors in both economies,

with home’s consumption elasticity captured by

β̂′ ≡
[
σhβ′,

(
1− σh

)
β′
]
, (A22)

and the innovation network captured by

Ω̂ ≡
[

Ω ◦Xh Ω−Ω ◦Xh

Ω−Ω ◦Xf Ω ◦Xf

]
. (A23)

Optimal worker allocation should follow β̂, and optimal R&D allocation should follow

γ̂ ′ ≡ ρ

ρ+ λ
β̂′
(
I2K×2K −

Ω̂

1 + ρ/λ

)−1

. (A24)

Next, recognize that the actual home planner’s problem (A21) is essentially the same as in the

hypothetical integrated economy, but with the additional constraint that the home planner can

only allocate resources domestically. We can apply the result in Section B.5 to get the following

Proposition.
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Proposition 11. The optimal resource allocation for an open economy planner who takes the path of
foreign allocations

{
`ft , s

f
t

}
as given and solves the problem in (A21) is to allocate workers according

to β̂K (i.e., `hit/¯̀h = β̂Ki ) and R&D resources according to γ̂K (i.e., shit/s̄
h = γ̂Ki ), where K is the set of

domestic sectors, and

β̂Ki =
β̂i∑
j∈K β̂j

, γ̂Ki =
γ̂i∑
j∈K γ̂j

.

The consumption-equivalent welfare gains from adopting the optimal domestic R&D allocation (in-
stead of allocation b) is LK (b) = exp

(
ψλ
ρ

(∑
j∈K γ̂j

) (
γ̂K
)′ (

ln γ̂K − ln b
))
.

B.7 General Functional Forms andEndogenous InnovationNetworkwith
Foreign Spillovers

We now extend our analysis in Section 2.6 to incorporate general functional forms, thereby en-

dogenizing the degree to which domestic innovation bene�ts from foreign spillovers. We show,

analogous to our closed-economy analysis in Section 2.5, that Proposition 7 in the main text con-

tinues to hold, as a �rst-order approximation around a balanced growth path, to the welfare impact

of adopting the optimal R&D allocation.

For completeness, we provide all equations to this economic environment:

V
({
qfjt, p

f
t

})
=
∫∞

0
e−ρt ln C

(
cdt , c

f
t

)
dt,

pft c
f
t = yt − cdt .

yt = Y
({
qψit`it

})

d ln qit/ dt = λ ·
(

ln (bits̄) + lnXi
({
qjt, q

f
jt

}))

The �rst equation represents consumer welfare; the second equation is trade balance; the third

equation is the production function; the last equation is the law of motion for sectoral knowledge

stock. The function Xi
({
qjt, q

f
jt

})
captures how domestic innovation in sector i bene�ts from

domestic and foreign knowledge; it is a generalization of the Cobb-Douglas functional form in

equation (19). We assume C and Y are constant-returns-to-scale, and that Xi (·) is homogeneous-

of-degree-zero, ∂ lnXi (·) /∂ ln qjt ≥ 0 ∀i 6= j, ∂ lnXi (·) /∂ ln qfjt ∀i, j, and |∂ lnXi (·) /∂ ln qjt| ≤
1∀i, j.

Consider the economy initially at t = 0 in a BGP with R&D allocation b, where foreign knowl-

edge qfjt grows at exogenous rate g in all sectors, and pft is time-invariant. De�ne

βi ≡
∂ lnY ({yit})

∂ ln yit

∣∣∣
t=0
, θij ≡





∂ lnXi({qit,qfjt})
∂ ln qjt

∣∣∣
t=0

if i = j

1 +
∂ lnXi({qit,qfjt})

∂ ln qjt

∣∣∣
t=0

otherwise.

β ≡ [βi] and Θ ≡ [θij] are the consumption and innovation spillover elasticities with respect to

domestic knowledge stock evaluated in the initial BGP. Note that I−Θ is generically invertible, as
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the economy features aggregate decreasing-returns-to-scale with respect to domestic knowledge

stock.

The Gateaux derivative of welfare with respect to log R&D allocation in the direction of h is

λ
ρ
ξγ ′h; the proof parallels that of Proposition 5.

B.8 Sector-Speci�c λi’s

We now introduce a theoretical extension allowing for sector-speci�cλi. Let Λ ≡




λ1 0 . . . 0
0 λ2 . . . 0
.
.
.

.

.

.

.
.
.

.

.

.

0 0 . . . λK




denote the diagonal matrix with λi along the diagonal, and let λ ≡ [λi] denote the vector of λi’s.

We show the optimal R&D allocation γ should follow (scaled so that γ sums to one)

γ ′ ∝ β′
(
I −Ω + ρΛ−1

)−1

and the consumption-equivalent welfare impact of adopting the optimal allocation is

L (b) = exp
(
ψβ′

(
I −Ω + ρΛ−1

)−1
(lnγ − ln b)

)
.

Speci�cally, the social planner’s problem is

max
{γt} s.t. γ′t1=1∀t

∫ ∞

0

e−ρtβ′ ln qt dt

s.t. d ln qt/dt = Λ (lnη + ln s̄1 + lnγt + (Ω− I) ln qt) (A25)

The control variable is γt and the state variable is qt. Denote the co-state variables as µt. The

current-value Hamiltonian is

H(γt, qt,µt, ζ) = β′ ln qt + µ′tΛ [lnη + ln s̄1 + lnγt + (Ω− I) ln qt] + ζ (1− γ ′t1).

For notational simplicity we suppress dependence on time for control, state, and co-state variables:

H({γi}, {qi}, {µi}, ζ, t) =
∑

i

βi ln qi +
∑

i

µiλi

(
ln ηi + ln s̄+ ln γi +

∑

j

ωij ln qj − ln qi

)
+ ζ(1−

∑

i

γi).

By the maximum principle

Hγi = 0⇐⇒ λiµi
γi

= ζ ∀i (A26)

Hln qi = ρµi − µ̇i ⇐⇒ βi − λiµi +
∑

j

λjµjωji = ρµi − µ̇i (A27)
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Similar to the proof of Proposition 1, we can show µ̇i = 0 for all i; hence,

γ ′ ∝ µ′Λ,

β′ = µ′ ((ρ+ Λ) I −ΛΩ)

= µ′Λ
(
ρΛ−1 + I −Ω

)

∝ γ ′
(
ρΛ−1 + I −Ω

)

Hence

γ ′ = β′
(
I −Ω + ρΛ−1

)−1
.

To derive the welfare impact of R&D reallocation, let gqi ≡ d ln qit
dt

be the growth rate of knowl-

edge stock in sector i along the BGP. We know

gq = Λ (lnη + ln s̄1 + ln b+ (Ω− I) ln qt)

Take derivative with respect to time,

0 = Λ (Ω− I)
d ln qt

dt

So that

gq = Ωgq

We know the only right-Perron eigenvector of Ω is the constant vector; hence all sectors must

grow at the same rate gq, satisfying

gq1 = Λ (lnη + ln s̄1 + ln b+ (Ω− I) ln qt)

=⇒ gqa′Λ−11 = a′ (lnη + ln s̄1 + ln b+ (Ω− I) ln qt)

=⇒ gq =
a′ (lnη + ln s̄1 + ln b)

a′Λ−11

LetA ≡ 1a′Λ−1

a′Λ−11
. Note (I −A) ln s̄1 = 0, and that

(Ω− I) = (Ω− I) (I −A)

= − (I −Ω +A) (I −A)

Let l̃n qt ≡ (I −A) ln qt; then

(I −A) d ln qt/dt =

(
Λ− 1a′

a′Λ−11

)
(lnη + ln s̄1 + ln b) + Λ (Ω− I) ln qt

= (I −A) Λ (lnη + ln b)−Λ (I −Ω +A) (I −A) ln qt

dl̃n qt
dt

= (I −A) Λ (lnη + ln b)−Λ (I −Ω +A) (I −A) l̃n qt
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We can integrate the ODE system:

l̃n qt = e−Λ(I−Ω+A)t

[
˜ln q0 +

∫ t

0

eΛ(I−Ω+A)s (I −A) Λ (lnη + ln b) ds

]

= e−Λ(I−Ω+A)t˜ln q0 + Λ−1 (I −Ω +A)−1 [I − e−Λ(I−Ω+A)t
]

(I −A) Λ (lnη + ln b)

We know

A
d ln qt

dt
=

1a′Λ−1

a′Λ−11
Λ (lnη + ln s̄1 + ln b+ (Ω− I) ln qt)

=
1a′

a′Λ−11
(lnη + ln s̄1 + ln b)

= AΛ (lnη + ln s̄1 + ln b)

Hence

A ln qt (b) = A ln q0 +AΛ (lnη + ln s̄1 + ln b) t

Now consider starting from the same initial knowledge stock q0 but with two di�erent time-

invariant R&D allocations b̃ and b,

A ln qt

(
b̃
)
−A ln qt (b) = AΛ

(
ln b̃− ln b

)
t

we have the following di�erence in knowledge stock over time:

ln qt

(
b̃
)
− ln qt (b) = A ln qt

(
b̃
)
−A ln qt (b)

+l̃n qt

(
b̃
)
− l̃n qt (b)

=
[
AΛt+ Λ−1 (I −Ω +A)−1 [I − e−Λ(I−Ω+A)t

]
(I −A) Λ

] (
ln b̃− ln b

)
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The di�erence in consumer welfare under two time-invariant paths of R&D allocations is

V
(
q0; {`t} , b̃

)
− V (q0; {`t} , b)

= ψβ′
∫ ∞

0

e−ρt
[
ln qt

(
b̃
)
− ln qt (b)

]
dt

= ψβ′
∫ ∞

0

e−ρt
[
AΛt+ Λ−1 (I −Ω +A)−1 [I − e−Λ(I−Ω+A)t

]
(I −A) Λ

]
dt
(

ln b̃− ln b
)

=
ψ

ρ2
β′AΛ

(
ln b̃− ln b

)

+ψβ′Λ−1 (I −Ω +A)−1

[
1

ρ
I −

∫ ∞

0

(
e−((ρI+Λ)I−Λ(Ω−A))t

)
dt

]
(I −A) Λ

(
ln b̃− ln b

)

=
ψ

ρ
β′
{

1

ρ
AΛ + ([(ρI + Λ)−Λ (Ω−A)])−1 (I −A) Λ

}(
ln b̃− ln b

)

=
ψ

ρ
β′ ([(ρI + Λ)−Λ (Ω−A)])−1

([
I +

1

ρ
Λ (I − (Ω−A))

])
AΛ

(
ln b̃− ln b

)

+
ψ

ρ
β′ ([(ρI + Λ)−Λ (Ω−A)])−1 (I −A) Λ

(
ln b̃− ln b

)

=
ψ

ρ2
β′ ([(ρI + Λ)−Λ (Ω−A)])−1 (ρI + ΛA) Λ

(
ln b̃− ln b

)

=
ψ

ρ2
β′
([
I −Ω + ρΛ−1 +A

])−1
(ρI +AΛ)

(
ln b̃− ln b

)

=
ψ

ρ2
β′
(
(ρI +AΛ)−1 [I −Ω + ρΛ−1 +A

])−1
(

ln b̃− ln b
)

Let α ≡ a′Λ−11. Note

(ρI +AΛ)−1 =
1

ρ

(
I − α

1 + αρ
AΛ

)

To see this,

(ρI +AΛ)
1

ρ

(
I − α

1 + αρ
AΛ

)

=
1

ρ

(
ρI +AΛ− (ρI +AΛ)

α

1 + αρ
AΛ

)

= I +
1

ρ

(
1a′

α
−
(
ρI +

1a′

α

)
1

1 + αρ
1a′
)

= I +
1

ρ

(
1

α
− 1 + αρ

α

1

1 + αρ

)
1a′

= I
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Hence,

V
(
q0; {`t} , b̃

)
− V (q0; {`t} , b)

=
ψ

ρ2
β′
(

1

ρ

(
I − α

1 + αρ
AΛ

)[
I −Ω + ρΛ−1 +A

])−1 (
ln b̃− ln b

)

=
ψ

ρ
β′
([
I −Ω + ρΛ−1 +

1a′Λ−1

α

]
− 1a′

1 + αρ

[
I −Ω + ρΛ−1 +

1a′Λ−1

α

])−1 (
ln b̃− ln b

)

=
ψ

ρ
β′
([
I −Ω + ρΛ−1 +

1a′Λ−1

α

]
− 1a′Λ−1

α

)−1 (
ln b̃− ln b

)

=
ψ

ρ
β′
(
I −Ω + ρΛ−1

)−1
(

ln b̃− ln b
)

Following the proof of Proposition 4, the consumption-equivalent welfare impact of adopting

the optimal allocation is thus

L (b) = ψβ′
(
I −Ω + ρΛ−1

)−1
(lnγ − ln b) .

B.9 Innovation Network with Heterogeneous Row-Sums
Our baseline speci�cation of Ω assumes that each row sums to one (i.e., Ω1 = 1, so that Ω is

a row-stochastic Markov matrix). Because the spectral radius of any Markov matrix is equal to

one, our baseline model is one with endogenous growth. The speci�cation also motivates our

measurement of the innovation network based on patent citations, ωij ≡ Citesij∑K
k=1 Citesik

.

In general, the knowledge spillover network is inherently di�cult to measure. A reason al-

ternative speci�cation is to construct the network as ωij ∝ Citesij . This speci�cation results

in an innovation network matrix Ω with heterogeneous row-sums (

∑
j ωij varies with i). The

proportionality constant maps monotonically into the spectral radius of Ω. The model features

endogenous (semi-endogenous) growth if the spectral radius is equal to (less than) one.
12

Propositions 1 extends directly to the case where the spectral radius of Ω is ≤ 1, as the proof

does not make use of the fact that Ω is row-stochastic. We now show Proposition 4 holds in the

endogenous growth case, with the spectral radius of Ω equal to one. Analogous results can be

derived (but omitted here) in the semi-endogenous growth case as well.

Let v denote the right-Perron eigenvector of Ω, scaled so that a′v = 1. Let A ≡ va′. We

adapt the derivations in the proof of Proposition 3 to this setting, replacing A ≡ 1a′ in the

baseline proof toA ≡ va′. Note that in the baseline setting where Ω is row-stochastic, v = 1, so

the derivation below is a strict generalization.

For time-invariant R&D allocation b, the law of motion of sectoral knowledge stock implies

a′
d ln q

dt
= λa′ (lnη + ln s̄ · 1 + ln b)

Hence, a′ ln qt always grows at a constant rate (and it equals to the rate of growth along a BGP)

12
The model features explosive growth if the spectral radius of Ω is greater than one.
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and can be solved in closed-form:

a′ ln qt = a′ ln q0 + λa′ (lnη + ln s̄ · 1 + ln b) t

Note that ΩA = AΩ = A andAA = A. Hence

(I −A) (Ω− I) = (I −Ω +A) (I −A)

Left-multiply the law of motion by (I −A), substitute the above, and let l̃n qt ≡ (I −A) ln qt,
we get

dl̃n qt
dt

= λ (I −A) (lnη + ln b)− λ (I −Ω +A) l̃n qt

Following the proof of Proposition 3,

l̃n qt = e−λ(I−Ω+A)t

[
˜ln q0 + λ

∫ t

0

eλ(I−Ω+A)s (I −A) (lnη + ln b) ds

]

= e−λ(I−Ω+A)t˜ln q0 + (I −Ω +A)−1 (I − e−λ(I−Ω+A)t
)

ds (I −A) (lnη + ln b)

ln qt = l̃n qt +A ln qt

= A ln q0 + λA (lnη + ln s̄ · 1 + ln b) t

+e−λ(I−Ω+A)t˜ln q0 + (I −Ω +A)−1 (I − e−λ(I−Ω+A)t
)

ds (I −A) (lnη + ln b)

Starting from the same initial knowledge stock q0 but with two di�erent time-invariant R&D

allocations b̃ and b, we have the following di�erence in knowledge stock over time:

ln qt

(
b̃
)
− ln qt (b) = A ln qt

(
b̃
)
−A ln qt (b)

+l̃n qt

(
b̃
)
− l̃n qt (b)

=
[
Aλt+ (I −Ω +A)−1 (I − e−λ(I−Ω+A)t

)
(I −A)

] (
ln b̃− ln b

)

The di�erence in consumer welfare under two time-invariant paths of R&D allocations is (deriva-

tion follows from the proof of Proposition 3)

V
(
q0; {`t} , b̃

)
− V (q0; {`t} , b)

= ψβ′
∫ ∞

0

e−ρt
[
ln qt

(
b̃
)
− ln qt (b)

]
dt

=
ψ

ρ

λ

ρ+ λ
β′
(
I − λ

ρ+ λ
Ω

)−1 (
ln b̃− ln b

)

=
ψλ

ρ2
γ ′
(

ln b̃− ln b
)
.
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which establishes Proposition 3 in this setting where Ω is not row-stochastic (but has spectral

radius equal to one). Proposition 4 follows immediately.

We can also derive the growth rate of sectoral knowledge stock along a BGP. We have already

derived the centrality-weighted growth rates above:

a′
d ln q

dt
= λa′ (lnη + ln s̄ · 1 + ln b) (A28)

We now derive the growth rate g of q in each sector. We have

g = λ (lnη + ln s̄ · 1 + ln b+ (Ω− I) ln qt)

Di�erenting with respect to time, we get

g = Ωg

Hence, the vector of sectoral growth rates is the right-Perron vector of the spillover matrix Ω,

with the scale pinned down by equation (A28).

B.10 Resource Mobility Between Production and R&D
In the closed economy analysis in the main text, we assumed the endowments of production

workers
¯̀

and scientists s̄ are both exogenous. We now argue that the optimal allocation shares

`it/¯̀
and sit/s̄ characterized in Lemma 1 and Proposition 1 continue to hold even if agents in the

economy can endogenously choose to become workers or scientists.

First, note that the proofs of Lemma 1 and Proposition 1 continue to hold even if the exoge-

nous endowments of workers and scientists are time-varying. Let V
(
q0;
{

¯̀
t

}
, {s̄t}

)
denote the

planner’s value function, where the masses of workers and scientists are both exogenous along

the entire growth path. The value function (7) in the main text corresponds to the special case

where
¯̀
t = ¯̀

and s̄t = s̄.
Now assume the economy is endowed with a unit mass of agents who can freely choose to

become workers or scientists,
¯̀
t + s̄t = 1. The value function that solves the relaxed problem,

where
¯̀
t and s̄t are endogenous, can be written as

V (q0) = max
{¯̀
t,s̄t}

V
(
q0;
{

¯̀
t

}
, {s̄t}

)
s.t.

¯̀
t + s̄t = 1.

Since the optimal allocation shares of workers (`it/¯̀
) and scientists (sit/s̄) are invariant to the

total mass of workers and scientists, it follows directly that the solution characterized in Section

2.2 continues to hold in the relaxed problem.
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C Details on Data Construction
In this appendix, we provide details on data collection and harmonization and robustness of our

approach.

C.1 U.S. Patent Data
U.S. patent data are obtained from the United States Patent and Trademark O�ce (USPTO).

13

The data include information on patent inventors and patent assignee, allowing us to identify the

geographic locations of the innovation (e.g., identifying cases in which a Chinese �rm is granted a

USPTO patent). We also observe the timing of the patents including the application and grant year.

Each patent record also provides information about the invention itself, including—important for

our research—its technology classi�cations based on the International Patent Classi�cation (IPC)

system and the citations it makes to prior inventions.

C.2 Global Patent Data
Data Source To capture global innovation, we use global patent data collected from Google

Patents. The data set contains information on more than 36 million patents from the more than

40 main patent authorities around the world, over the period 1976–2020, including the USPTO,

the European Patent O�ce (EPO), the Japanese Patent O�ce (JPO), and the Chinese National

Intellectual Property Administration, among others. For each patent, Google Patents provides

similar information as in the USPTO data described above.

Google Patents data are obtained from the DOCDB (EPO worldwide bibliographic data), the

same underlying source as the more widely used PATSTAT data. We choose to use Google Patents

as our main global innovation data source because it is public and accessible to all researchers free

of charge. In Appendix D, we discuss speci�c di�erences between Google Patents and PATSTAT

data. We show that these databases have only minor di�erences in their coverages and de�nitions

of key variables and that all our empirical results are robust to both.

Identifying Patenting Locations Filing a patent in a country or patent o�ce does not neces-

sarily mean the underlying invention is created in the same geographic unit (e.g., Chinese �rms

�le USPTO patents, Korean �rms �le patents with the Chinese National Intellectual Property Ad-

ministration). These “global patenting” activities pose two important challenges for our empirical

analysis. First, we need to properly determine the geographical location of the innovating activ-

ities. We assign each patent to a geographical unit according to the country of residence of its

inventor(s). When a given patent is associated with multiple inventors from di�erent countries or

territories, we assign these inventors equal weight (e.g., N inventors each obtaining 1/N credit).

If this information is not available (as in 31% of the global patent sample),
14

we use the country of

13
We obtain the patent data from the USPTO PatentsView platform, accessible at https://www.patentsview.org/

download/.

14
Patent observations with only the country of the patent o�ce as geographic location are mainly historical U.S.

patents (51%) and historical patents originating from France, Germany, and the Soviet Union (each accounting for

about 10%).
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the assignee(s) instead. For 8% of patents with no easily accessible geographic location data, we

assign the country of the patent o�ce.

Identifying a Unique Invention Behind Multiple and Multinational Patents The second

challenge is to de-duplicate multiple patents �led with di�erent patent authorities for the same

underlying invention. This is common practice for IP protection reasons, but may lead to double

counting. To overcome this challenge, we use patent family information. We assign a set of patents

to the same family if they have: (1) the same application number; or (2) the same PCT number;

or (3) the same Google-provided patent family ID; or (4) at least one priority application number

in common. Using patent family information, we can make sure a single invention is not counted

more than once even when multiple patents are �led based on it. We also can use the earliest

�ling date to properly identify the timing of the underlying invention.

Cross-country Citations Importantly, patent citation information is global too—that is, we

observe citations made by a patent �led by a U.S. �rm with the USPTO to a patent owned by a

German �rm �led at the EPO. This allows us to track the innovation network at the global scale. In

our sample, the proportion of citations a patent makes to foreign patents is 38%, and this number

has been growing over the years.

C.3 Connecting Patent Data with Sectoral Data
Patent data are classi�ed into International Patent Classi�cation (IPC) classes based on the tech-

nological content of the invention. The IPC system provides a uniform and hierarchical system

of language-independent symbols for the classi�cation of patents and utility model according to

the di�erent areas of technology to which they pertain. The IPC classi�cation system does not

naturally map to the sector classi�cations in either the WIOD data nor the BLS data on sectoral

output and linkages. Speci�cally, each sector could patent in multiple IPC classes, while many

sectors could patent in each single IPC class. Patent data need to be mapped to sectoral data (on

value-added, R&D expenditures, employment, intermediate inputs, etc.) for our empirical analysis

in di�erent sections of our paper. This includes: (1) constructing sectoral measures of innovation

activities, and (2) projecting sectoral measures into technology class levels.

Measuring Innovation at the Sector Level To construct innovation output for each country-

sector-year and the country-sector-pair-wise innovation network, we need to map innovation

activities to industrial sectors. We rely on our ability to observe innovation activities at the level

of �rms, for which we observe their industry classi�cations. Starting with U.S. domestic data—

we link the USPTO patent database to Compustat using the bridge �le provided by the NBER

(up to the year 2006) and KPSS’s data repository.
15

For later years, we complete the link using

a fuzzy matching method based on company name, basic identity information, and innovation

pro�les, similar to Ma (2020) and Ma (2021). Firms’ sectoral classi�cations are de�ned by North

American Industry Classi�cation System (NAICS) codes, which are then mapped to BLS sectors

using the crosswalk �le provided by the BLS website.
16

For each sector, we can aggregate all

15
The extended data for KPSS can be accessed at https://github.com/KPSS2017/

Technological-Innovation-Resource-Allocation-and-Growth-Extended-Data.

16
Accessed at https://www.bls.gov/ces/naics/.
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Figure A.1. Comovements of Public Patent Sample and Whole Sample
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Notes. This table documents the time trend of the patent shares for �rms covered in our �rm-level databases across

the world and in di�erent countries.

innovation activities including patent numbers, citation-adjustment patent counts, and total R&D

expenditures, conducted by U.S. �rms in that speci�c sector..

The connection between international patent and sectoral data implements a similar logic

but uses more complicated data collection and matching processes. We assemble information

on global �rms from Worldscope and Datastream databases accessed through Wharton Research

Data Services (WRDS). The raw data sets cover more than 109,000 global �rms located in 160

countries all over the world. The process is similar to that described above for U.S. data. The

standard industry classi�cations in these databases are based on the International Standard In-

dustrial Classi�cation (ISIC), and can therefore be accurately mapped to the WIOD, which is also

organized using the ISIC system.

The bene�t of using information on �rms to accurately link innovation to industrial sectors

warrants the question of how representative those �rms’ innovation are. We �nd that �rms in

our data set produce about half of all patents in each country—for example, our sample of �rms

covers 44% of patents in the U.S., and 65% in Japan, two countries with the largest number of

patents. Figure A.1 shows the time trend of patent shares from �rms covered in our databases

in the whole world and in di�erent countries. The similarity of industry distribution between

patents from covered �rms and all patents in the USPTO is 0.97 when we compare the share of

patents in each of the 131 3-digit IPCs for all patents and for patents from �rms covered in our

�rm-level databases.

Projecting Sectoral Measures to Technology Classes When the unit of analysis is an IPC

class (in a certain country-year), the key challenge is to project sectoral measures, such as value-

added, to technology classes. We use the sector-IPC mapping provided in Lybbert and Zolas (2014).

Using this mapping, we decompose each sectoral measure with proper weights to relevant IPC

classes, and then aggregate the measures into the IPC level.
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C.4 Constructing Cross-Sector R&D Allocation Data
Our quantitative analysis uses data on R&D allocation across di�erent technology classes in each

country. There is no standard database to exhaustively measure such information. Our primary

measure relies on aggregating �rm-level R&D expenditures to the country-sector-year level, based

on three widely used �rm-level data sets: Compustat, Worldscope, and Datastream. Combined,

these data cover more than 100,000 global �rms located in 160 countries and account for over

95% of the world’s total market capitalization. For multinationals, we �rst attribute the �rm-

level R&D expenditures to IPC-country level in proportion to each �rm’s shares of patents in

each IPC-country, following Gri�th, Harrison, and Van Reenen (2006), and then aggregate to

IPC-country-year level.

This primary measure of sectoral R&D has the advantage of covering more country-years

compared to alternative approaches such as the OECD ANBERD Database. It also allows us to

attribute R&D expenditures of multi-sector and multinational �rms more explicitly and in a more

transparent fashion. However, the primary measure of sectoral R&D is imperfect, as the �rm-

level data sets oversample large �rms and have potentially di�erent reporting standard across

countries; we also miss R&D inputs from public sectors. Nevertheless, it is important to note

that, as our theory concerns the cross-sector R&D allocation, what matters for our quantitative

analysis later is the allocation shares of R&D resources across sectors in each country and not the

aggregate R&D levels; any mismeasurement that a�ects all sectors proportionally should have no

quantitative impacts.

As robustness checks, we show that our primary measure of R&D allocation shares correlates

strongly with two independent sources of R&D data, thereby giving us con�dence in using our

measure for quantitative analysis. We �rst provide a robustness check using the OECD Analytical

Business Enterprise Research and Development (ANBERD) Database (Machin and Van Reenen,

1998), which has country-sector-level R&D information. Relative to our primary R&D measure,

the ANBERD Database has more limited country-year coverage and relies more on imputations

from �rm-level surveys. Our primary R&D measure also allows us to explicitly and transparently

attribute R&D of multi-sector or multinational enterprises to di�erent sectors and countries.

For all the major economies in both data sets, R&D allocation from ANBERD is highly corre-

lated with our primary measure. In the subsample of country-year observations covered in both

data sources, we show that R&D expenses calculated from our �rm-level data represents a signi�-

cant proportion of R&D estimated by the ANBERD data, and they follow a very similar aggregate

trend (Figure A.2).

The second robustness check calculates the cross-sector R&D allocation using the innova-

tion output (which is better measured) rather than input: the number of patents produced in

each country-IPC (or country-sector) divided by total number of patents produced in that speci�c

country.

Table A.1 shows the correlation among R&D allocation measures used in our empirical analysis—

R&D expense shares using R&D expenditures aggregated from �rm-level data; R&D expenditures

surveyed and imputed in the OECD ANBERD database; and patent shares. The correlations are

calculated using 20 top patenting countries in 2010 and their R&D allocation measures across 3-

digit IPC categories. The top panel �rst aggregate sectoral R&D expenditures across all countries

and then calculate correlation of the sectoral R&D shares. The bottom panel calculate a country-

speci�c sectoral R&D allocation correlations and then average the correlations across di�erent
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Figure A.2. Comovements of Public Patent Sample and Whole Sample
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Notes. This table documents the time trend of total R&D expenditures calculated from aggregating �rm-level R&D

from Compustat, Worldscope, and Datastream and those calculated from aggregating country-sector information

from OECD ANBERD data. For each year, we cover countries that are covered in both databases.

countries. In each panel, the bottom half of the table shows the Pearson correlations; the top half

of the table shows Spearman’s rank correlation, which is equal to the Pearson correlation of the

rank values.

These three proxies for R&D allocations are highly correlated. For example, in Panel A, the

correlation between R&D allocations aggregated from �rm-level data and from the OECD scores

above 0.9. The correlation between input shares and the patent output shares is slightly lower,

but still above 0.8. The high correlations among these three measures of R&D allocation shares

translate into the robustness of our quantitative results, as illustrated in Section E.4 of the Online

Appendix.

D Cross-checking Google Patents with PATSTAT
This appendix compares data from Google Patents (accessible to all researchers free of charge) and

the widely used commercial database PATSTAT. These exercises will compare their data coverage,

key variable de�nitions, and the robustness of empirical analyses in those two databases.

D.1 Basic Data Structure and Coverage
Google Patents and PATSTAT share nearly identical data structure. Both databases have three

levels of innovation units: publication, application, and family.

• Application: The central unit is an innovation application, which is a request �led to a

patent o�ce for patent protection for an invention (which may or may not be granted later).
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Table A.1. Di�erent Measures of Cross-Sector R&D Allocation Are Highly Correlated

Figure 7. R&D By IPC3 - Global in 2010. Corr: 0.9293
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Table 15. Correlation of Different Sources of Real Allocations By IPC3 - Global in 2010
131 Correlation Version

Panel A Share of Aggregated Firm R&D Share of Patents Share of OECD R&D

Share of Aggregated Firm R&D 0.83 0.97
Share of Patents 0.86 0.82
Share of OECD R&D 0.93 0.78

Panel B Share of Aggregated Firm R&D Share of Patents Share of OECD R&D

Share of Aggregated Firm R&D 0.74 0.91
Share of Patents 0.74 0.76
Share of OECD R&D 0.74 0.69

Table 16. Correlation of Different Sources of Real Allocations By IPC3 - Global in 2010
131*20 Correlation Version

Share of Aggregated Firm R&D Share of Patents Share of OECD R&D

Share of Aggregated Firm R&D 0.80 0.91
Share of Patents 0.33 0.78
Share of OECD R&D 0.94 0.29

17

Notes: This table shows the correlation of R&D allocation measures used in our empirical analysis–R&D expense

shares using R&D expenditures aggregated from �rm-level data; R&D expenditures surveyed and imputed in the

OECD ANBERD database; and patent shares. The correlations are calculated using 20 top patenting countries in

2010 and their R&D allocation measures across 3-digit IPC categories. The top panel �rst aggregate sectoral R&D

expenditures across all countries and then calculate correlation of the sectoral R&D shares. The bottom panel calculate

a country-speci�c sectoral R&D allocation correlations and then average the correlations across di�erent countries.

In each panel, the bottom half of the table shows the Pearson correlations; the top half of the table shows Spearman’s

rank correlation, which is equal to the Pearson correlation of the rank values.

• Publication (most basic unit): After an application is �led, various publications could be

issued.
17

These publications can be disclosed patent �lings (often 18 months after the initial

�ling date), granted patent speci�cation, corrections, etc. In simple terms, publications help

identify key events over an application’s life cycle. The basic units of both Google Patents

and PATSTAT are innovation “publications.”

• Family:18
Applications that cover the same underlying invention are grouped into families.

This often happens when the same invention is �led with multiple patent o�ces, sometimes

simultaneously, for protections in di�erent countries. All applications (and publications

tracking their life cycle events) in the same family thus have the same priorities, and their

technical content is often regarded as identical or almost identical. Patent family counting

allows us to track unique inventions across di�erent economies.

Figure A.3 presents the sample coverage of publications, the most basic units, for both Google

Patents and PATSTAT in the time series. The coverages of the two data sets are virtually identical.

D.2 Identifying Granted Patents
Publications represent the most comprehensive set of innovation-related documents, yet many of

them are irrelevant for studying innovation—some publications are associated with denied appli-

cations, some are design patents unrelated to scienti�c or technological progress, etc. As a result, it

is useful to identify granted patents related to new technologies (e.g., utility patents in the USPTO

17
In cases that generate no publications (i.e., the invention is treated with absolute con�dentiality), the invention

would not be accessible in any database.

18
In our paper, we consider the more widely accepted de�nition of simple family, also called the DOCDB family or

Espacenet patent family.
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Figure A.3. Google Patents v.s. PATSTAT by Year

(a) Applications by Filing Year (b) Applications by Publication Year

system). The two database handle this process largely identically, yielding very comparable patent

sets. However, there are three noticeable di�erences:

1. Identifying whether a patent is granted mainly relies on the kind code of the patent, which

is de�ned by the patent o�ce and will change with the reform of the patent system of the

patent o�ce.
19

For example, the kind code of patent “US-10001017-B2” is “B2.” The rules

used to identify granted patents di�er somewhat in Google Patents vs. PATSTAT.

2. Because PATSTAT uses additional legal event data to identify granted patents, patents granted

by some small patent o�ces can be identi�ed.

3. Other minor di�erences include missing �ling dates or issue dates.

Table A.2 shows the comparison of granted patents between Google Patents and PATSTAT and

list the sources of coverage di�erences.

19
For the detailed meaning of di�erence kind codes in di�erent patent o�ces, we refer readers to the document of

format concordance of publication numbers in EPO (see https://www.epo.org/searching-for-patents/data/coverage/

regular.html).
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Table A.2. Di�erence of Granted Patents Between Google Patents and PATSTAT

Panel (A): For Granted Patents in PATSTAT

# Patents

Patents granted in 1985—2014 19,923,292 100.00%

Overlapped with Google Patents 17,135,611 86.01%

Non-overlapped with Google Patents 2,787,681 13.99% 100.00%

1. Additional patent o�ce data from legal event data 1,456,242 52.24% 100.00%

(1) For patent o�ce ZA 175,317 12.04%

(2) For patent o�ce MX 125,298 8.60%

(3) For patent o�ce PL 125,246 8.60%

(4) For patent o�ce UA 95,956 6.59%

(5) For patent o�ce PT 82,533 5.67%

(6) For patent o�ce DD 79,171 5.44%

(7) For patent o�ce NO 65,312 4.48%

(8) For patent o�ce BR 62,447 4.29%

(9) For patent o�ce HU 61,707 4.24%

(10) For patent o�ce IL 57,165 3.93%

(11) Other patent o�ces including BG, BY, CH, CO, CS, CU, CZ, 526,090 36.13%

EA, EE, GE, GR, HK, HR, ID, IE, IN, IS, KE, LT, LV, MA, MC,

MD, ME, MN, MT, MY, NI, OA, PE, PH, RO, RS, SA, SE, SG, SI,

SK, SM, SV, TJ, TR, UY, VN, YU, ZW

2. Additional rules used to identify granted patents 1,331,439 47.76% 100.00%

(1) For patent o�ce AT, patents with kind code in [T] 543,805 40.84%

(2) For patent o�ce DE, patents with kind code in [T2] 468,202 35.17%

(3) For patent o�ce KR, patents with kind code in [A] 65,237 4.90%

(4) For patent o�ce DK, patents with kind code in [T3] 58,520 4.40%

(5) For patent o�ce ES, patents with kind code in [A1, A6] 47,354 3.56%

(6) For patent o�ce AU, patents with kind code in [A1, A8] 32,835 2.47%

(7) For patent o�ce FI, patents with kind code in [C] 31,907 2.40%

(8) For patent o�ce CN, patents with kind code in [A] 28,928 2.17%

(9) For patent o�ce AR, patents with kind code in [A1] 24,865 1.87%

(10) For patent o�ce US, patents with kind code in [E] 16,366 1.23%

(11) Other patent o�ces 13,420 1.01%

Panel (B): For Granted Patents in Google Patents

# Patents

Patents granted in 1985—2014 18,144,529 100.00%

Overlapped with PATSTAT 17,135,612 94.44%

Non-overlapped with PATSTAT 1,008,917 5.56% 100.00%

1. Additional patent o�ce data from legal event data 0 0.00%

2. Additional rules used to identify granted patents 1,008,917 100.00% 100.00%

(1) For patent o�ce DE, patents with kind code in [D1] 883,482 87.57%

(2) For patent o�ce DK, patents with kind code in [T3] 58,118 5.76%

(3) For patent o�ce FI, patents with kind code in [B] 31,585 3.13%

(4) For patent o�ce BE, patents with kind code in [A3, A4, A5, A6, A7] 20,797 2.06%

(5) For patent o�ce KR, patents with kind code in [B1] 6,546 0.65%

(6) For patent o�ce ES, patents with kind code in [B1] 2,399 0.24%

(7) For patent o�ce DZ, patents with kind code in [A1] 1,755 0.17%

(8) For patent o�ce AU, patents with kind code in [B2] 1,458 0.14%

(9) For patent o�ce EP, patents with kind code in [B1] 1,344 0.13%

(10) For patent o�ce SU, patents with kind code in [A1] 932 0.09%

(11) Other patent o�ces 501 0.05%

Notes. This table compares coverages of granted patents between Google Patents and PATSTAT and the reasons for

discrepancies.
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Despite those di�erences, Google Patents and PATSTAT agree on roughly 95% of the identi�ed

granted patents. In Figure A.4, we present the numbers of granted patents in Google Patents and

PATSTAT. We also show this di�erence across various patent o�ces and countries of origin.

Figure A.4. Google Patents v.s. PATSTAT Coverage

(a) Granted Patents by Filing Year (b) Granted Patents by Publication Year

(c) Granted Patents by Filing Year (43 WIOD Countries)

(d) Granted Patents by Publication Year (43 WIOD

Countries)

(e) Google Patents vs. PATSTAT By Patent O�ces (f) Google Patents vs. PATSTAT By Invention Origin
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D.3 Patent Family
De�ning patent family involves the use of information regarding priority dates and priority patents

in the global patent database, among others. Figure A.5 presents the number of patent families

identi�ed in both data sets. They are very comparable to each other, and the minor gap can be

explained by the di�erences in the number of identi�ed patents described in the previous section.

Figure A.5. Google Patents v.s. PATSTAT: Patent Families by Year

To further check this consistency, in Figure A.6 we show the distribution of the number of

patents in each family in Google Patents and PATSTAT, which again are quite comparable. In

Google Patents, there are 11,693,980 patent families between 1985 and 2014. Among these families,

3,184,884 contain at least two patents, and on average, these families contain 3.99 patents. In

PATSTAT, there are 12,344,446 patent families between 1985 and 2014. Among those families,

3,263,376 of them contain at least two patents, and on average, these families contain 4.34 patents.
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Figure A.6. Google Patents v.s. PATSTAT: Distribution of Number of Patents in Each Family

We next perform a family-to-family comparison between the two databases. First, we focus

on families that only contain one patent: 98.74% of these families in Google Patents are consis-

tent with that in PATSTAT, and 97.79% of those families in PATSTAT are consistent with those in

Google Patents. For patent families with two patents, the share of patents in PATSTAT that are

consistent with Google Patents is 94.11%; the share of patents in Google Patents that is consis-

tent with PATSTAT is 94.38%. Overall, patent families seem to be consistently de�ned across the

databases at a very high rate.

D.4 Robustness of Results Using Google Patents and PATSTAT
In this section, we present results from using PATSTAT patent data as the base for innovation

measurement and innovation network construction. The overall takeaway is that the results using

PATSTAT are virtually identical to results using Google Patents.

D.4.1 Innovation Network

Results in this subsection show that innovation networks constructed using PATSTAT and Google

Patents are highly correlated (Table A.3), and they have virtually identical properties such as

centrality (Figure A.7) and visualizations (Figure A.8).

Table A.3. Correlations of Between the Innovation Network from Google Patents and PATSTAT

All U.S. Japan China Korea Germany Canada UK France Russia Sweden

0.997 0.998 0.945 0.987 0.975 0.979 0.986 0.989 0.966 0.887 0.934

Notes. This is the correlation between the innovation networks calculated using Google Patents and PATSTAT data.
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Figure A.7. Innovation Centrality and Key Sectors for PASTAT
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Figure 8. Innovation Centrality and Key Sectors
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1 A61 medical or veterinary science; hygiene
2 G06 computing; calculating or counting
3 H01 basic electric elements
4 G01 measuring; testing
5 H04 electric communication technique
6 B60 vehicles in general
7 G02 optics
8 B01 physical or chemical processes or

apparatus in general
9 C08 organic macromolecular compounds; their

preparation or chemical working-up;
compositions based thereon

10 F16 engineering elements or units; general
measures for producing and maintaining
effective functioning of machines or
installations; thermal insulation in general

2.3.2. Knowledge Spillovers

Table 3. Global Knowledge Spillovers - Based on WIOD - PATSTAT

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

mit
0.181*** 0.193*** 0.174*** 0.285*** 0.325*** 0.275***
(0.053) (0.056) (0.054) (0.080) (0.082) (0.081)

ln(R&D)mi,t−1 0.031*** 0.031*** 0.030*** 0.036*** 0.038*** 0.036**
(0.010) (0.010) (0.010) (0.014) (0.014) (0.014)

KnowledgeDown

mit
-0.035 -0.113***
(0.030) (0.039)

KnowledgeU p,IO

mit
0.054 -0.036

(0.067) (0.071)

R2 0.968 0.968 0.969 0.943 0.943 0.944
No. of Country x Sectors 564 564 550 564 564 550
No. of Obs 10549 10549 10315 10549 10549 10315
Fixed Effects Country x Sector, Country x Year, Sector x Year

9

Notes. This �gure reproduces Figure 2 in the paper using PATSTAT data. This �gure presents the innovation centrality

of di�erent technology classes categorized using IPCs. Panel (a) plots log(ai), and the sectors are ranked in descending

order based on ai. Panel (b) lists the top ten IPCs by their innovation centrality.
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Figure A.8. Visualizing the Innovation Network for PATSTAT

(a) IPC-to-IPC (131×131) Network Ω (b) Global Innovation Network Across Country-Sectors
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Notes. This �gure reproduces Figure 1 in the paper using PATSTAT data. The left panel visualizes the IPC-to-IPC

network Ω as a heatmap, with darker colors representing larger matrix entries; sectors are ordered according to their

innovation centrality. The right panel visualizes the global innovation network. Each node is a country-sector, with

size drawn in proportion to patent output. Arrows represent knowledge �ows, with width drawn in proportion to

citation shares.

D.4.2 Knowledge Spillovers

This subsection reproduces results to con�rm the mechanism of sectoral innovation activities

being in�uenced by innovation from global upstream sectors.
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Table A.4. Evidence of the Global Innovation Network for Knowledge Spillovers

Based on WIOD - PATSTAT

Figure 9. Countries with More Innovation Hubs Have Better R&D Allocations in 2010
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2. Appendix

Table A.4. Global Knowledge Spillovers - Based on WIOD - PATSTAT

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

mit
0.194*** 0.203*** 0.185*** 0.308*** 0.335*** 0.300***

(0.050) (0.052) (0.051) (0.075) (0.075) (0.076)

ln(R&D Stock)mi,t−1 0.041*** 0.041*** 0.041*** 0.076*** 0.076*** 0.075***

(0.013) (0.013) (0.013) (0.018) (0.018) (0.019)

KnowledgeDown

mit
-0.025 -0.078**

(0.031) (0.039)

KnowledgeU p,IO

mit
0.044 -0.068

(0.067) (0.068)

R2
0.967 0.967 0.968 0.942 0.942 0.942

No. of Country x Sectors 570 570 556 570 570 556

No. of Obs 11011 11011 10771 11011 11011 10771

Fixed Effects Country x Sector, Country x Year, Sector x Year

8

Notes. This table reproduces Table 3 in the paper using PATSTAT data. This table tests the relation between innovation

in a focal sector and past innovation in connected sectors through the innovation network, in an international setting.

We restrict the sample to country-sectors that have at least ten patents over the full sample period. To measure

innovation production (Y ), we use the number of patents and total number of citations. The key variable of interest,

Knowledge
Up
it , is the knowledge from upstream, de�ned in (28). Fixed e�ects at the country-sector, country-year, and

sector-year levels are included as controls. Columns (2) and (5) include downstream knowledge as a control. Columns

(3) and (6) include knowledge accumulated from upstream sectors in the production network as a control. Standard

errors in parentheses are clustered at the country-sector level.
∗
,
∗∗

, and
∗∗∗

indicate signi�cance at the 10%, 5%, and

1% levels respectively.
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E Supplementary Results
In this section, we provide additional empirical results.

E.1 Innovation Networks Are Stable Over Time and Across Countries
We �rst document that innovation networks are stable over time and across innovative countries.

We construct time-varying measures of the innovation network, following the formula in (24) but

using citations made by patents �led during speci�c time periods, from all countries in our sample.

For the innovation network time-stamped at t, we use new patents and their citations between t−
10 and t−1 to construct the network. Table A.5 shows the correlations between our baseline, time-

invariant measure ωij of the innovation network and these other measures ωijt constructed using

patents �led in speci�c years t. The bottom half of the table shows the Pearson correlations; the

top half of the table shows Spearman’s rank correlation, which is equal to the Pearson correlation

of the rank values and can be more revealing of network similarities than the Pearson correlation

of values (Liu, 2019). Table A.5 shows that the innovation network is highly stable over time;

the time-varying measures exhibit above 0.8 correlations even when measured using citation data

that are three decades apart, and all year-speci�c measures are strongly correlated with our time-

invariant baseline measure.

Table A.5. The Innovation Network Is Highly Correlated Over Time

3. Additional Results

3.1. Innovation Network is Stable over Time and across Countries

Table 4. The Innovation Network is Highly Correlated over Time

Time Period All years 2020 2010 2000 1990 1980

All years 0.98 0.98 0.97 0.90 0.89

2020 0.95 0.97 0.93 0.86 0.85

2010 0.96 0.97 0.96 0.88 0.87

2000 0.93 0.92 0.96 0.92 0.90

1990 0.90 0.80 0.84 0.90 0.91

1980 0.81 0.77 0.81 0.87 0.89

Table 5. The Innovation Network is Highly Correlated across Countries

Countries All US Japan China South Korea Germany Russia France UK Canada Netherlands

All 0.98 0.87 0.87 0.84 0.89 0.63 0.86 0.92 0.88 0.81

US 0.95 0.84 0.86 0.82 0.88 0.64 0.85 0.92 0.88 0.80

Japan 0.86 0.83 0.88 0.89 0.85 0.63 0.87 0.86 0.84 0.83

China 0.85 0.86 0.87 0.88 0.85 0.66 0.85 0.87 0.86 0.82

South Korea 0.78 0.77 0.83 0.84 0.84 0.64 0.84 0.85 0.82 0.84

Germany 0.85 0.87 0.81 0.80 0.72 0.64 0.83 0.87 0.83 0.81

Russia 0.62 0.63 0.62 0.62 0.55 0.61 0.65 0.64 0.64 0.66

France 0.91 0.86 0.79 0.77 0.72 0.82 0.57 0.86 0.85 0.83

UK 0.87 0.89 0.85 0.85 0.80 0.86 0.64 0.80 0.88 0.82

Canada 0.86 0.88 0.79 0.81 0.71 0.81 0.59 0.80 0.81 0.81

Netherlands 0.84 0.85 0.79 0.82 0.75 0.79 0.58 0.78 0.79 0.81

10

Notes: This table shows the correlation of innovation networks calculated using di�erent vintages of patent data.

For each decade, all global patents in that decade are included when constructing the innovation network. The

bottom half of the table shows the Pearson correlations; the top half of the table shows Spearman’s rank correlation,

which is equal to the Pearson correlation of the rank values.

Second, we construct country-speci�c innovation networks. Speci�cally, we use the same

formula (24) but restrict the sample to all patents from each country. Table A.6 shows the corre-

lations between our baseline, location-invariant measure and the country-speci�c measures for

the ten countries with the most patents in our sample; Pearson correlations are again shown in

the bottom half of the table whereas Spearman’s rank correlations are shown in the top half. In-

novation networks are highly stable across countries. In particular, our baseline measure, which

is constructed using patents pooled from around the world, has a correlation coe�cient of above

0.98 with the network implied by U.S. patents and is also highly correlated (>0.8 rank correlation)

with the innovation networks in Japan, China, Germany, Canada, the U.K., and France. The only
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exception is Russia, whose innovation network is less perfectly correlated with the measures, but

the correlation is still substantial (about 0.6).

Table A.6. The Innovation Network Is Highly Correlated Across Countries

3. Additional Results

3.1. Innovation Network is Stable over Time and across Countries

Table 4. The Innovation Network is Highly Correlated over Time

Time Period All years 2020 2010 2000 1990 1980

All years 0.98 0.98 0.97 0.90 0.89

2020 0.95 0.97 0.93 0.86 0.85

2010 0.96 0.97 0.96 0.88 0.87

2000 0.93 0.92 0.96 0.92 0.90

1990 0.90 0.80 0.84 0.90 0.91

1980 0.81 0.77 0.81 0.87 0.89

Table 5. The Innovation Network is Highly Correlated across Countries

Countries All US Japan China South Korea Germany Russia France UK Canada Netherlands

All 0.98 0.87 0.87 0.84 0.89 0.63 0.86 0.92 0.88 0.81

US 0.95 0.84 0.86 0.82 0.88 0.64 0.85 0.92 0.88 0.80

Japan 0.86 0.83 0.88 0.89 0.85 0.63 0.87 0.86 0.84 0.83

China 0.85 0.86 0.87 0.88 0.85 0.66 0.85 0.87 0.86 0.82

South Korea 0.78 0.77 0.83 0.84 0.84 0.64 0.84 0.85 0.82 0.84

Germany 0.85 0.87 0.81 0.80 0.72 0.64 0.83 0.87 0.83 0.81

Russia 0.62 0.63 0.62 0.62 0.55 0.61 0.65 0.64 0.64 0.66

France 0.91 0.86 0.79 0.77 0.72 0.82 0.57 0.86 0.85 0.83

UK 0.87 0.89 0.85 0.85 0.80 0.86 0.64 0.80 0.88 0.82

Canada 0.86 0.88 0.79 0.81 0.71 0.81 0.59 0.80 0.81 0.81

Netherlands 0.84 0.85 0.79 0.82 0.75 0.79 0.58 0.78 0.79 0.81

10

Notes: This table shows the correlation of innovation networks calculated using patents in the top ten innovative

countries ranked by patent outputs between 2010—2014. When calculating this country-speci�c innovation

network, all patents of the country across all years are included. The bottom half of the table shows the Pearson

correlations; the top half of the table shows Spearman’s rank correlations, which are equal to the Pearson

correlation of the rank values.

E.2 Knowledge Spillovers Through Innovation Networks—Robustness
This subsection provides additional robustness analyses on innovation di�usion through inno-

vation networks, echoing Section 4.2 in the paper. The main results supporting the important

role of innovation networks in knowledge spillovers are provided in Tables 2 and 3 in the paper.

Below, we present tests to show the robustness of these results. Speci�cally, these analyses incor-

porate changing U.S. BLS Sectors to IPC (International Patent Classi�cation) classes as the node

in innovation networks (Table A.7), additional measures of innovation output (Table A.11), and

di�erent time horizons to calculate upstream innovation (Tables A.9 and A.12). Finally, we revisit

the dynamic prediction of our key law of motion (25), that upstream knowledge from the more

distant past has less e�ect on patent output, in Figure (A.9). The �gure shows an obsolescence-like

pattern (Ma, 2021) in which past upstream knowledge’s e�ect on subsequent innovation weakens

over time, precisely as our theory predicts.
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Table A.7. U.S. and Global Evidence of Knowledge Spillover Through Innovation Networks

Based on IPC

Table A.4. Global Knowledge Spillovers - Based on WIOD - PATSTAT

Table A.7. Knowledge Spillovers - Based on 645 4-Digit IPC

US Global

Y = ln(Patents) ln(Cites) ln(Patents) ln(Cites)

(1) (2) (3) (4)

KnowledgeU p

it
0.499*** 0.523*** 0.043*** 0.074***

(0.085) (0.106) (0.010) (0.014)

ln(R&D Stock)i,t−1 0.409*** 0.495*** -0.002 0.002

(0.110) (0.140) (0.005) (0.007)

KnowledgeDown

it
-0.244*** -0.349*** -0.031*** -0.025**

(0.064) (0.090) (0.008) (0.011)

R2
0.960 0.948 0.945 0.902

No. of Sectors 431 431

No. of Country x Sectors 4595 4595

No. of Obs 8620 8620 86224 86224

Country x Sector

Fixed Effects Sector, Year Country x Year

Sector x Year

9

Notes. This table reproduces Tables 2 and 3 in the paper. The key di�erence is this table uses the country by detailed 4-

digit IPC (international patent classi�cation) class as the unit of nodes instead of country by (BLS or WIOD) industrial

sectors.

Table A.8. U.S. Evidence of Knowledge Spillover Through Innovation Networks

Adding The Impact of Own SectorTable A.8. US Knowledge Spillovers - Add Self-Citations

Y = ln(Patents) ln(Cites) ln(Patent Value)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

KnowledgeU p

it
0.759*** 0.827*** 0.706*** 0.947*** 0.849*** 0.900*** 0.986*** 1.043*** 0.970***

(0.131) (0.172) (0.130) (0.191) (0.270) (0.196) (0.293) (0.382) (0.286)

KnowledgeOwn

it
0.643*** 0.630*** 0.577*** 0.559*** 0.577*** 0.498*** 0.252** 0.242** 0.214

(0.054) (0.053) (0.080) (0.085) (0.080) (0.127) (0.105) (0.105) (0.184)

ln(R&D Stock)i,t−1 0.177** 0.178** 0.164** 0.130 0.128 0.117 0.412*** 0.412*** 0.403**

(0.073) (0.072) (0.076) (0.105) (0.105) (0.108) (0.152) (0.152) (0.154)

KnowledgeU p,IO

it
-0.038 -0.054 -0.145

(0.121) (0.185) (0.212)

KnowledgeOwn,IO

it
0.092 0.088 0.071

(0.083) (0.108) (0.178)

KnowledgeDown

it
-0.125 0.182 -0.105

(0.143) (0.270) (0.304)

R2
0.937 0.937 0.937 0.910 0.910 0.910 0.888 0.888 0.888

No. of Sectors 95 95 95 95 95 95 95 95 95

No. of Obs 1892 1892 1892 1892 1892 1892 1892 1892 1892

Fixed Effects Sector, Year Sector, Year Sector, Year

Table A.9. US Knowledge Spillovers - Use Different τ to Construct the Network Knowledge

Panel (A): τ = 5
Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p,τ=5
it

0.450*** 0.513*** 0.415*** 0.697*** 0.763*** 0.670***

(0.142) (0.161) (0.139) (0.157) (0.163) (0.158)

ln(R&D Stock)i,t−1 0.449*** 0.463*** 0.430*** 0.372*** 0.386*** 0.356***

(0.096) (0.096) (0.092) (0.112) (0.112) (0.109)

KnowledgeDown,τ=5
it

-0.142 -0.148

(0.157) (0.095)

KnowledgeU p,IO

it
0.277* 0.218

(0.164) (0.202)

R2
0.916 0.916 0.917 0.900 0.900 0.900

No. of Sectors 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1900 1900 1900

Fixed Effects Sector, Year Sector, Year

Panel (B): τ = 20
Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p,τ=20
it

0.644*** 0.694*** 0.592*** 0.858*** 0.912*** 0.819***

(0.185) (0.202) (0.180) (0.207) (0.215) (0.200)

ln(R&D Stock)i,t−1 0.410*** 0.418*** 0.397*** 0.323*** 0.332*** 0.313***

(0.099) (0.100) (0.095) (0.113) (0.113) (0.110)

KnowledgeDown,τ=20
it

-0.123 -0.133

(0.164) (0.103)

KnowledgeU p,IO

it
0.238 0.178

(0.165) (0.201)

R2
0.917 0.917 0.918 0.900 0.900 0.900

No. of Sectors 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1900 1900 1900

Fixed Effects Sector, Year Sector, Year

10

Notes. This table reproduces Table 2 in the paper by incorporating patenting activities from past innovation from

own sector.
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Table A.9. U.S. Evidence of Knowledge Spillover Through Innovation Networks

Di�erent Knowledge Periods

Table A.8. US Knowledge Spillovers - Add Self-Citations

Y = ln(Patents) ln(Cites) ln(Patent Value)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

KnowledgeU p

it
0.759*** 0.827*** 0.706*** 0.947*** 0.849*** 0.900*** 0.986*** 1.043*** 0.970***

(0.131) (0.172) (0.130) (0.191) (0.270) (0.196) (0.293) (0.382) (0.286)

KnowledgeOwn

it
0.643*** 0.630*** 0.577*** 0.559*** 0.577*** 0.498*** 0.252** 0.242** 0.214

(0.054) (0.053) (0.080) (0.085) (0.080) (0.127) (0.105) (0.105) (0.184)

ln(R&D Stock)i,t−1 0.177** 0.178** 0.164** 0.130 0.128 0.117 0.412*** 0.412*** 0.403**

(0.073) (0.072) (0.076) (0.105) (0.105) (0.108) (0.152) (0.152) (0.154)

KnowledgeU p,IO

it
-0.038 -0.054 -0.145

(0.121) (0.185) (0.212)

KnowledgeOwn,IO

it
0.092 0.088 0.071

(0.083) (0.108) (0.178)

KnowledgeDown

it
-0.125 0.182 -0.105

(0.143) (0.270) (0.304)

R2
0.937 0.937 0.937 0.910 0.910 0.910 0.888 0.888 0.888

No. of Sectors 95 95 95 95 95 95 95 95 95

No. of Obs 1892 1892 1892 1892 1892 1892 1892 1892 1892

Fixed Effects Sector, Year Sector, Year Sector, Year

Table A.9. US Knowledge Spillovers - Use Different τ to Construct the Network Knowledge

Panel (A): τ = 5
Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p,τ=5
it

0.450*** 0.513*** 0.415*** 0.697*** 0.763*** 0.670***

(0.142) (0.161) (0.139) (0.157) (0.163) (0.158)

ln(R&D Stock)i,t−1 0.449*** 0.463*** 0.430*** 0.372*** 0.386*** 0.356***

(0.096) (0.096) (0.092) (0.112) (0.112) (0.109)

KnowledgeDown,τ=5
it

-0.142 -0.148

(0.157) (0.095)

KnowledgeU p,IO

it
0.277* 0.218

(0.164) (0.202)

R2
0.916 0.916 0.917 0.900 0.900 0.900

No. of Sectors 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1900 1900 1900

Fixed Effects Sector, Year Sector, Year

Panel (B): τ = 20
Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p,τ=20
it

0.644*** 0.694*** 0.592*** 0.858*** 0.912*** 0.819***

(0.185) (0.202) (0.180) (0.207) (0.215) (0.200)

ln(R&D Stock)i,t−1 0.410*** 0.418*** 0.397*** 0.323*** 0.332*** 0.313***

(0.099) (0.100) (0.095) (0.113) (0.113) (0.110)

KnowledgeDown,τ=20
it

-0.123 -0.133

(0.164) (0.103)

KnowledgeU p,IO

it
0.238 0.178

(0.165) (0.201)

R2
0.917 0.917 0.918 0.900 0.900 0.900

No. of Sectors 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1900 1900 1900

Fixed Effects Sector, Year Sector, Year

10

Notes. This table reproduces Table 2 in the paper. The key di�erence is using di�erent τ periods to calculate knowledge

accumulated through the innovation network. Table 2 uses τ = 10, while this table uses alternative values of τ = 5
and τ = 10.
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Table A.10. U.S. Evidence of Knowledge Spillover Through Innovation Networks

Exponential Knowledge DiscountingTable A.10. US Knowledge Spillovers - Using Depreciated Version of Knowledge Stock

Y = ln(Patents) ln(Cites) ln(Patent Value)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

KnowledgeU p,depreciation

it
0.507*** 0.563*** 0.466*** 0.766*** 0.824*** 0.734*** 0.913*** 0.952*** 0.916***

(0.168) (0.189) (0.163) (0.181) (0.190) (0.177) (0.282) (0.292) (0.281)

ln(R&D Stock)i,t−1 0.431*** 0.439*** 0.414*** 0.344*** 0.353*** 0.331*** 0.503*** 0.509*** 0.504***

(0.100) (0.101) (0.096) (0.115) (0.115) (0.112) (0.146) (0.148) (0.145)

KnowledgeDown,depreciation

it
-0.123 -0.127 -0.085

(0.159) (0.097) (0.117)

KnowledgeU p,IO

it
0.271 0.211 -0.015

(0.165) (0.203) (0.206)

R2
0.916 0.916 0.917 0.900 0.900 0.900 0.886 0.886 0.886

No. of Sectors 95 95 95 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1900 1900 1900 1900 1900 1900

Fixed Effects Sector, Year Sector, Year Sector, Year

Table A.11. US Spillover - Additional Innovation Measure

Y = ln(Patents)

(1) (2) (3) (4)

KnowledgeU p

it
0.909*** 0.945*** 0.914*** 1.435***

(0.294) (0.306) (0.294) (0.437)

ln(R&D Stock)i,t−1 0.500*** 0.505*** 0.502*** 0.471**

(0.146) (0.148) (0.146) (0.188)

KnowledgeDown

it
-0.078

(0.114)

KnowledgeU p,IO

it
-0.027

(0.208)

ln(R&DTaxPrice)mi,t−1 9.757

(9.215)

Specification OLS OLS OLS IV 2nd Stage

IV 1st Stage F-statistics 427

R2
0.886 0.886 0.886 0.112

No. of Sectors 95 95 95 95

No. of Obs 1900 1900 1900 1140

Fixed Effects Sector, Year

11

Notes. This table reproduces Table 2 in the paper by incorporating exponential discounting of knowledge stocks.

Table A.11. U.S. Evidence of Knowledge Spillover Through Innovation Networks

Additional Innovation Measure

Table A.10. US Knowledge Spillovers - Using Depreciated Version of Knowledge Stock

Y = ln(Patents) ln(Cites) ln(Patent Value)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

KnowledgeU p,depreciation

it
0.507*** 0.563*** 0.466*** 0.766*** 0.824*** 0.734*** 0.913*** 0.952*** 0.916***

(0.168) (0.189) (0.163) (0.181) (0.190) (0.177) (0.282) (0.292) (0.281)

ln(R&D Stock)i,t−1 0.431*** 0.439*** 0.414*** 0.344*** 0.353*** 0.331*** 0.503*** 0.509*** 0.504***

(0.100) (0.101) (0.096) (0.115) (0.115) (0.112) (0.146) (0.148) (0.145)

KnowledgeDown,depreciation

it
-0.123 -0.127 -0.085

(0.159) (0.097) (0.117)

KnowledgeU p,IO

it
0.271 0.211 -0.015

(0.165) (0.203) (0.206)

R2
0.916 0.916 0.917 0.900 0.900 0.900 0.886 0.886 0.886

No. of Sectors 95 95 95 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1900 1900 1900 1900 1900 1900

Fixed Effects Sector, Year Sector, Year Sector, Year

Table A.11. US Spillover - Additional Innovation Measure

Y = ln(Patents)

(1) (2) (3) (4)

KnowledgeU p

it
0.909*** 0.945*** 0.914*** 1.435***

(0.294) (0.306) (0.294) (0.437)

ln(R&D Stock)i,t−1 0.500*** 0.505*** 0.502*** 0.471**

(0.146) (0.148) (0.146) (0.188)

KnowledgeDown

it
-0.078

(0.114)

KnowledgeU p,IO

it
-0.027

(0.208)

ln(R&DTaxPrice)mi,t−1 9.757

(9.215)

Specification OLS OLS OLS IV 2nd Stage

IV 1st Stage F-statistics 427

R2
0.886 0.886 0.886 0.112

No. of Sectors 95 95 95 95

No. of Obs 1900 1900 1900 1140

Fixed Effects Sector, Year

11

Notes. This table reproduces Table 2 in the paper with the additional innovation measure of patent value from (Kogan

et al., 2017) based on the stock market reaction to patent approval.
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Table A.12. Global Evidence of Knowledge Spillover Through Innovation Networks

Di�erent Knowledge PeriodsTable A.12. Global Knowledge Spillovers - Use Different τ to Construct the Network Knowledge

Panel (A): τ = 5
Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p,τ=5
mit

0.101** 0.111** 0.092* 0.223*** 0.243*** 0.219***

(0.047) (0.049) (0.047) (0.070) (0.075) (0.071)

ln(R&D Stock)i,t−1 0.044*** 0.044*** 0.044*** 0.085*** 0.085*** 0.084***

(0.013) (0.013) (0.013) (0.018) (0.018) (0.018)

KnowledgeDown,τ=5
mit

-0.017 -0.035

(0.032) (0.046)

KnowledgeU p,IO

mit
0.070 -0.055

(0.065) (0.068)

R2
0.968 0.968 0.968 0.942 0.943 0.943

No. of Country x Sectors 570 570 556 570 570 556

No. of Obs 11014 11014 10774 11014 11014 10774

Fixed Effects Country x Sector, Country x Year, Sector x Year

Panel (B): τ = 20
Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p,τ=20
mit

0.204*** 0.232*** 0.201*** 0.425*** 0.472*** 0.424***

(0.057) (0.059) (0.058) (0.080) (0.083) (0.081)

ln(R&D Stock)i,t−1 0.043*** 0.044*** 0.043*** 0.084*** 0.084*** 0.083***

(0.013) (0.013) (0.013) (0.018) (0.018) (0.018)

KnowledgeDown,τ=20
mit

-0.079* -0.134*

(0.045) (0.069)

KnowledgeU p,IO

mit
0.072 -0.051

(0.064) (0.068)

R2
0.968 0.968 0.968 0.943 0.943 0.943

No. of Country x Sectors 570 570 556 570 570 556

No. of Obs 11014 11014 10774 11014 11014 10774

Fixed Effects Country x Sector, Country x Year, Sector x Year

Table A.13. Knowledge Spillover via Innovation Network and Production Network

Y = ln(Patents) ln(Cites) ln(Patent Value)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

it
0.509*** 0.756*** 0.914***

(0.169) (0.192) (0.294)

ln(R&D Stock)i,t−1 0.410*** 0.442*** 0.328*** 0.375*** 0.502*** 0.559***

(0.096) (0.094) (0.111) (0.107) (0.146) (0.148)

KnowledgeDown

it

KnowledgeU p,IO

it
0.258 0.338** 0.198 0.316 -0.027 0.117

(0.165) (0.166) (0.203) (0.205) (0.208) (0.218)

R2
0.917 0.914 0.900 0.896 0.886 0.881

No. of Sectors 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1900 1900 1900

Fixed Effects Sector, Year Sector, Year Sector, Year

12

Notes. This table reproduces Table 3 in the paper. The key di�erence is this table uses di�erent τ periods to calculate

knowledge accumulated through the innovation network. Table 3 uses τ = 10, while this table uses alternative values

of τ = 5 and τ = 10.
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Table A.13. U.S. Evidence of Knowledge Spillover Through Innovation Networks

Exploring the I-O Linkages

Table A.12. Global Knowledge Spillovers - Use Different τ to Construct the Network Knowledge

Panel (A): τ = 5
Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p,τ=5
mit

0.101** 0.111** 0.092* 0.223*** 0.243*** 0.219***

(0.047) (0.049) (0.047) (0.070) (0.075) (0.071)

ln(R&D Stock)i,t−1 0.044*** 0.044*** 0.044*** 0.085*** 0.085*** 0.084***

(0.013) (0.013) (0.013) (0.018) (0.018) (0.018)

KnowledgeDown,τ=5
mit

-0.017 -0.035

(0.032) (0.046)

KnowledgeU p,IO

mit
0.070 -0.055

(0.065) (0.068)

R2
0.968 0.968 0.968 0.942 0.943 0.943

No. of Country x Sectors 570 570 556 570 570 556

No. of Obs 11014 11014 10774 11014 11014 10774

Fixed Effects Country x Sector, Country x Year, Sector x Year

Panel (B): τ = 20
Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p,τ=20
mit

0.204*** 0.232*** 0.201*** 0.425*** 0.472*** 0.424***

(0.057) (0.059) (0.058) (0.080) (0.083) (0.081)

ln(R&D Stock)i,t−1 0.043*** 0.044*** 0.043*** 0.084*** 0.084*** 0.083***

(0.013) (0.013) (0.013) (0.018) (0.018) (0.018)

KnowledgeDown,τ=20
mit

-0.079* -0.134*

(0.045) (0.069)

KnowledgeU p,IO

mit
0.072 -0.051

(0.064) (0.068)

R2
0.968 0.968 0.968 0.943 0.943 0.943

No. of Country x Sectors 570 570 556 570 570 556

No. of Obs 11014 11014 10774 11014 11014 10774

Fixed Effects Country x Sector, Country x Year, Sector x Year

Table A.13. Knowledge Spillover via Innovation Network and Production Network

Y = ln(Patents) ln(Cites) ln(Patent Value)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

it
0.509*** 0.756*** 0.914***

(0.169) (0.192) (0.294)

ln(R&D Stock)i,t−1 0.410*** 0.442*** 0.328*** 0.375*** 0.502*** 0.559***

(0.096) (0.094) (0.111) (0.107) (0.146) (0.148)

KnowledgeDown

it

KnowledgeU p,IO

it
0.258 0.338** 0.198 0.316 -0.027 0.117

(0.165) (0.166) (0.203) (0.205) (0.208) (0.218)

R2
0.917 0.914 0.900 0.896 0.886 0.881

No. of Sectors 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1900 1900 1900

Fixed Effects Sector, Year Sector, Year Sector, Year

12

Notes. This table reproduces Table 2 in the paper by incorporating standalone knowledge spillovers from the I-O

network in columns (2), (4), and (6).

Figure A.9. Dynamic Responses of Innovation Output to Upstream KnowledgeFigure A.9. Dynamic Responses of Innovation Output to Upstream Knowledge
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Table A.15. Knowledge Spillovers - First Stage IV Results

United States Global

Y = KnowledgeU p

it
KnowledgeU p

mit

(1) (2)

KnowledgeU p,IV
it

1.092***

(0.053)

KnowledgeU p,IV
mit

0.542***

(0.045)

ln(R&D Stock)i,t−1 0.060*** 0.001

((0.018)) (0.007)

Fixed Effects

Sector Yes

Year Yes

Country x Sector Yes

Country x Year Yes

Sector x Year Yes

F-statistics 427 148

R2
0.984 0.982

No. of Sectors 95

No. of Country x Sectors 282

No. of Obs 1140 4587

Notes. US: 1995-2006, Global: 1980-2006.

13

Notes. This �gure presents how the focal sector’s innovations dynamically respond to past innovations from upstream

sectors in the innovation network. The coe�cients are from regressions of focal sectors’ innovations at times t + 1
through t+ 10 on upstream knowledge measured at time-t. We control for log R&D with time-1 lag as well as sector

and year �xed e�ects. The half-life of the dynamic e�ects is about 4 years.

E.3 Using R&D Tax Credit as an Instrument for Upstream R&D
Our analysis on the impact of upstream innovation (i.e., Tables 2 and 3) is subject to the concern

of common shocks: a group of sectors connected to each other via citation linkages may face

similar demand, supply, and investment opportunities, leading to co-movements of innovation

activities. Serial correlations in these common shocks would lead to a positive coe�cient β1 in

regression (27) even without cross-sector knowledge spillovers. This is a classic version of the

“re�ection problem” documented in Manski (1993) and, more relevant to our setting, in Bloom

A48



et al. (2013). As noted in Bloom et al. (2013), since knowledge spillovers through the innovation

network are entered lagged at least one year (and up to ten years), and because �xed e�ects and

other controls are included in the estimation, the potential bias is likely small. Nevertheless, to

further resolve this issue, we consider an instrumental variable strategy based on R&D tax credits,

a method widely used in innovation literature. Here we present only the basic framework and how

we adapt the strategy to our setting. We refer readers to a classic use case in Bloom et al. (2013)

and the Online Appendix of the paper.

This instrumental variable strategy shocks R&D activities using the user cost of R&D capital,

which in turn is often closely tied to tax policies and subsidies like R&D tax credit. User cost

of R&D is a�ected by two types of R&D tax credit, federal tax rules that interact with di�erent

�rms di�erently (e.g., based on past R&D expenses, etc.), and state-level tax credits, deprecia-

tion allowances, and corporation taxes that a�ect �rms di�erently based on the location of R&D

activities.

• For state-level tax credits, we obtain the state-by-year R&D tax price data, available for

1970 to 2006, from Wilson (2009). These data are further aggregated to sector-year-level

tax price of R&D by calculating the weighted sectoral average, which is weighted using the

total number of inventors in a sector who work in each state (ten-year average of inventor

shares). In other words, if a sector has more inventor weight in a high tax credit state (thus

the user cost is lower), the sector will have a lower user cost of R&D in our aggregation.

Using inventor shares is common practice in this literature as R&D labor cost is often the

key target of R&D tax policies.

• For the federal tax component, which is shown to be less powerful for explaining sector-level

R&D activities in our setting, we follow the approach in Bloom et al. (2013) and construct

a �rm-year level federal tax-driven user cost of R&D. This �rm-year-level measure is then

further aggregated to sector-year level by weighting each �rm according to its size measured

using the number of inventors.

The R&D user cost can also be calculated at the country-sector-year level. For this purpose, we

obtain data from Thomson (2017), who provides the user cost estimates for di�erent types of

R&D input, in particular labor and capital, in di�erent country-years. Following Thomson (2017),

we calculate the tax price at the country-sector-year level using the weight-average tax price of

di�erent expenditure types with lagged expenditure share on those types as weights. For example,

the “Apparel, dressing, and dyeing of fur” industry has a capital-labor R&D composition ratio of

92% to 8%, then the R&D user cost is a weighted average using those ratios. This estimate covers

25 WIOD countries from 1980 to 2006.

We implement the empirical strategy by �rst projecting sectoral innovation on the instrument.

Table A.14 demonstrates that the instruments have power in predicting sectoral innovation output

both in the U.S. (column 1) and globally (column 2). In both models, we control for �xed e�ects

at the cross-section and in the time series. From these models, we calculate sectoral innovation

predicted by these tax credits, lnnTAXit .
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Table A.14. Predicting Sectoral Patent Count Using R&D Tax Credits

3.2.2. Using R&D Tax Credit as an Instrument for Upstream R&D

Table 17. Predict Patent Count Using R&D Tax Credits

United States Global

Y = ln(Patents) ln(Patents)
(1) (2)

ln(User Cost o f R&D Capital) -11.774*** -0.288**
(4.041) (0.134)

Fixed Effects
Sector Yes
Year Yes
Country x Sector Yes
Country x Year Yes
Sector x Year Yes

R2 0.866 0.969
No. of Sectors 158
No. of Country x Sectors 1,242
No. of Obs 4,615 18,799

Notes.

• US state tax credit is obtained from Wilson (2009), which incorporates state level corporate income taxes,

depreciation allowances, and R&D tax credits. Following Bloom et al. (2013), we use the state R&D tax price

together with inventor locations to approximate where the R&D occurs oo construct the R&D tax price at the

sector-year level. The US R&D tax data is available from 1970 to 2006.

– Wilson (2009, RES) Beggar Thy Neighbor- The In-State, Out-of-State, and Aggregate Effects of R&D

Tax Credits

– Bloom, Schankerman, and Van Reenen (2013, ECTA) Identifying Technology Spillovers and Product

Market Rivalry

• Global tax credit is obtained from Thomson (2017). Follow Thomson (2017), we calculate the tax price at the

country-sector-year level using the weight-average tax price of different expenditure types (such as labor and

capital) with lagged expenditure share as weights. It covers 25 WIOD countries from 1980 to 2006.

– Thomson (2017, REST) The Effectiveness of R&D Tax Credits

18

Notes. This table presents evidence that the user cost of R&D capital predicts patent output. Standard errors are

clustered at the sector and year levels.

In the main 2SLS analysis, for each sector, we calculate upstream knowledge using the same

equation as in (26), replacing the realized sectoral innovation with the �tted values lnnTAXit . We

denote this �tted value of the knowledge as Knowledge
Up,TAX
it . The variable Knowledge

Up,TAX
it is

then used as an instrument in the analysis in (27). We report the �rst-stage regressions in Table

A.15, and domestic and global versions of the knowledge di�usion results in Tables A.16 and A.17,

corresponding to Tables 2 and 3 in the paper.
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Table A.15. Predicting Sectoral Patent Count Using R&D Tax Credits

Figure A.9. Dynamic Responses of Innovation Output to Upstream Knowledge
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Table A.15. Knowledge Spillovers - First Stage IV Results

United States Global

Y = KnowledgeU p

it
KnowledgeU p

mit

(1) (2)

KnowledgeU p,IV
it

1.092***

(0.053)

KnowledgeU p,IV
mit

0.542***

(0.045)

ln(R&D Stock)i,t−1 0.060*** 0.001

((0.018)) (0.007)

Fixed Effects

Sector Yes

Year Yes

Country x Sector Yes

Country x Year Yes

Sector x Year Yes

F-statistics 427 148

R2
0.984 0.982

No. of Sectors 95

No. of Country x Sectors 282

No. of Obs 1140 4587

Notes. US: 1995-2006, Global: 1980-2006.

13

Notes. The �rst-stage regression, instrumental variable is the �tted value of upstream innovation accumulated

through the innovation network. Standard errors are clustered at the sector and year levels.

A51



Table A.16. US Evidence of Knowledge Spillovers Through Innovation Networks–Second-Stage
IV ResultsTable A.16. US Knowledge Spillovers - Second Stage IV Results - Based on BLS Sector

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

it
0.583** 0.594** 0.591** 0.917*** 0.931*** 0.926***

(0.269) (0.269) (0.265) (0.289) (0.288) (0.287)

ln(R&D Stock)i,t−1 0.408*** 0.424*** 0.388*** 0.206 0.225 0.183

(0.111) (0.123) (0.107) (0.133) (0.146) (0.134)

KnowledgeDown

it
-0.057 -0.068

(0.134) (0.110)

KnowledgeU p,IO

it
0.248 0.282

(0.357) (0.407)

R2
0.169 0.169 0.171 0.092 0.093 0.090

No. of Sectors 95 95 95 95 95 95

No. of Obs 1140 1140 1140 1140 1140 1140

Fixed Effects Sector, Year Sector, Year

Notes. Sample period is 1995-2006, and the sector sample is the same as that in Table ??.

Table A.17. Global Knowledge Spillovers - Second Stage IV Results - Based on WIOD Sector

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

mit
0.226** 0.235** 0.255** 0.453*** 0.462*** 0.485***

(0.113) (0.106) (0.116) (0.143) (0.142) (0.149)

ln(R&D Stock)i,t−1 0.079*** 0.079*** 0.081*** 0.083*** 0.083*** 0.085***

(0.020) (0.020) (0.020) (0.030) (0.030) (0.030)

KnowledgeDown

mit
-0.020 -0.024

(0.085) (0.116)

KnowledgeU p,IO

mit
-0.213 -0.205

(0.390) (0.392)

R2
0.035 0.036 0.022 0.028 0.029 0.023

No. of Country x Sectors 282 282 277 282 282 277

No. of Obs 4587 4587 4527 4587 4587 4527

Fixed Effects Country x Sector, Country x Year, Sector x Year

Notes. Sample period is 1980-2006, and the country-sector sample is the same as that in Table ??.

Table A.18. Unilaterally Optimal R&D Allocations Differ Significantly Across Countries

Countries US Japan China South Korea Germany Russia France UK Canada Netherlands EU

US 0.97 0.90 0.93 0.95 0.84 0.94 0.94 0.92 0.95 0.95
Japan 0.91 0.93 0.94 0.96 0.87 0.94 0.94 0.93 0.94 0.96
China 0.87 0.93 0.95 0.91 0.91 0.91 0.90 0.91 0.90 0.94
South Korea 0.85 0.89 0.84 0.92 0.83 0.90 0.90 0.88 0.89 0.92
Germany 0.77 0.89 0.79 0.82 0.85 0.97 0.96 0.94 0.97 0.99
Russia 0.70 0.76 0.86 0.60 0.57 0.84 0.82 0.90 0.86 0.86
France 0.81 0.89 0.87 0.73 0.73 0.76 0.98 0.94 0.97 0.98
UK 0.84 0.89 0.86 0.73 0.73 0.76 0.99 0.94 0.97 0.98
Canada 0.78 0.88 0.88 0.72 0.71 0.84 0.97 0.96 0.95 0.95
Netherlands 0.83 0.89 0.87 0.74 0.72 0.76 0.98 0.97 0.96 0.97
EU 0.87 0.96 0.91 0.82 0.90 0.74 0.95 0.95 0.93 0.94

14

Notes. Second-stage regression. Same setting as in Table 2.

Table A.17. Global Evidence of Knowledge Spillovers Through Innovation

Networks–Second-Stage IV Results

Table A.16. US Knowledge Spillovers - Second Stage IV Results - Based on BLS Sector

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

it
0.583** 0.594** 0.591** 0.917*** 0.931*** 0.926***

(0.269) (0.269) (0.265) (0.289) (0.288) (0.287)

ln(R&D Stock)i,t−1 0.408*** 0.424*** 0.388*** 0.206 0.225 0.183

(0.111) (0.123) (0.107) (0.133) (0.146) (0.134)

KnowledgeDown

it
-0.057 -0.068

(0.134) (0.110)

KnowledgeU p,IO

it
0.248 0.282

(0.357) (0.407)

R2
0.169 0.169 0.171 0.092 0.093 0.090

No. of Sectors 95 95 95 95 95 95

No. of Obs 1140 1140 1140 1140 1140 1140

Fixed Effects Sector, Year Sector, Year

Notes. Sample period is 1995-2006, and the sector sample is the same as that in Table ??.

Table A.17. Global Knowledge Spillovers - Second Stage IV Results - Based on WIOD Sector

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

mit
0.226** 0.235** 0.255** 0.453*** 0.462*** 0.485***

(0.113) (0.106) (0.116) (0.143) (0.142) (0.149)

ln(R&D Stock)i,t−1 0.079*** 0.079*** 0.081*** 0.083*** 0.083*** 0.085***

(0.020) (0.020) (0.020) (0.030) (0.030) (0.030)

KnowledgeDown

mit
-0.020 -0.024

(0.085) (0.116)

KnowledgeU p,IO

mit
-0.213 -0.205

(0.390) (0.392)

R2
0.035 0.036 0.022 0.028 0.029 0.023

No. of Country x Sectors 282 282 277 282 282 277

No. of Obs 4587 4587 4527 4587 4587 4527

Fixed Effects Country x Sector, Country x Year, Sector x Year

Notes. Sample period is 1980-2006, and the country-sector sample is the same as that in Table ??.

Table A.18. Unilaterally Optimal R&D Allocations Differ Significantly Across Countries

Countries US Japan China South Korea Germany Russia France UK Canada Netherlands EU

US 0.97 0.90 0.93 0.95 0.84 0.94 0.94 0.92 0.95 0.95
Japan 0.91 0.93 0.94 0.96 0.87 0.94 0.94 0.93 0.94 0.96
China 0.87 0.93 0.95 0.91 0.91 0.91 0.90 0.91 0.90 0.94
South Korea 0.85 0.89 0.84 0.92 0.83 0.90 0.90 0.88 0.89 0.92
Germany 0.77 0.89 0.79 0.82 0.85 0.97 0.96 0.94 0.97 0.99
Russia 0.70 0.76 0.86 0.60 0.57 0.84 0.82 0.90 0.86 0.86
France 0.81 0.89 0.87 0.73 0.73 0.76 0.98 0.94 0.97 0.98
UK 0.84 0.89 0.86 0.73 0.73 0.76 0.99 0.94 0.97 0.98
Canada 0.78 0.88 0.88 0.72 0.71 0.84 0.97 0.96 0.95 0.95
Netherlands 0.83 0.89 0.87 0.74 0.72 0.76 0.98 0.97 0.96 0.97
EU 0.87 0.96 0.91 0.82 0.90 0.74 0.95 0.95 0.93 0.94

14

Notes. Second-stage regression. Same setting as in Table 3.
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E.4 Additional Results on R&D Misallocation
This subsection presents additional results that quantify R&D misallocation, supplementing Sec-

tion 5.

• Tables A.18 and A.19 present cross-country and time-series correlations of optimal R&D

allocation γ.

• Figure A.10 presents US model �ts with some labeled sectors.

• Figure A.11 presents analysis using alternative parameters of ρ/λ; Figure A.12 presents

analysis using data from di�erent years.

• Figures A.13, A.14, and A.15 present analysis using patent outputs and OECD R&D expen-

diture shares as innovation allocation measures, supplementing analysis using R&D expen-

diture shares (aggregated from �rm-level data) in the paper.

• Figure A.16 provides additional analysis on the time series of R&D misallocation and implied

welfare cost.

• Table A.20 summarizes the robustness of our quantitative analysis across di�erent speci�-

cations of Ω, ρ, and λ.

• Figure A.17 presents evidence on R&D misallocation within 1-digit IPC patent classes.
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Table A.18. Unilaterally Optimal R&D Allocations Across Countries

Table A.16. US Knowledge Spillovers - Second Stage IV Results - Based on BLS Sector

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

it
0.583** 0.594** 0.591** 0.917*** 0.931*** 0.926***

(0.269) (0.269) (0.265) (0.289) (0.288) (0.287)

ln(R&D Stock)i,t−1 0.408*** 0.424*** 0.388*** 0.206 0.225 0.183

(0.111) (0.123) (0.107) (0.133) (0.146) (0.134)

KnowledgeDown

it
-0.057 -0.068

(0.134) (0.110)

KnowledgeU p,IO

it
0.248 0.282

(0.357) (0.407)

R2
0.169 0.169 0.171 0.092 0.093 0.090

No. of Sectors 95 95 95 95 95 95

No. of Obs 1140 1140 1140 1140 1140 1140

Fixed Effects Sector, Year Sector, Year

Notes. Sample period is 1995-2006, and the sector sample is the same as that in Table ??.

Table A.17. Global Knowledge Spillovers - Second Stage IV Results - Based on WIOD Sector

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

mit
0.226** 0.235** 0.255** 0.453*** 0.462*** 0.485***

(0.113) (0.106) (0.116) (0.143) (0.142) (0.149)

ln(R&D Stock)i,t−1 0.079*** 0.079*** 0.081*** 0.083*** 0.083*** 0.085***

(0.020) (0.020) (0.020) (0.030) (0.030) (0.030)

KnowledgeDown

mit
-0.020 -0.024

(0.085) (0.116)

KnowledgeU p,IO

mit
-0.213 -0.205

(0.390) (0.392)

R2
0.035 0.036 0.022 0.028 0.029 0.023

No. of Country x Sectors 282 282 277 282 282 277

No. of Obs 4587 4587 4527 4587 4587 4527

Fixed Effects Country x Sector, Country x Year, Sector x Year

Notes. Sample period is 1980-2006, and the country-sector sample is the same as that in Table ??.

Table A.18. Unilaterally Optimal R&D Allocations Differ Significantly Across Countries

Countries US Japan China South Korea Germany Russia France UK Canada Netherlands EU

US 0.97 0.90 0.93 0.95 0.84 0.94 0.94 0.92 0.95 0.95
Japan 0.91 0.93 0.94 0.96 0.87 0.94 0.94 0.93 0.94 0.96
China 0.87 0.93 0.95 0.91 0.91 0.91 0.90 0.91 0.90 0.94
South Korea 0.85 0.89 0.84 0.92 0.83 0.90 0.90 0.88 0.89 0.92
Germany 0.77 0.89 0.79 0.82 0.85 0.97 0.96 0.94 0.97 0.99
Russia 0.70 0.76 0.86 0.60 0.57 0.84 0.82 0.90 0.86 0.86
France 0.81 0.89 0.87 0.73 0.73 0.76 0.98 0.94 0.97 0.98
UK 0.84 0.89 0.86 0.73 0.73 0.76 0.99 0.94 0.97 0.98
Canada 0.78 0.88 0.88 0.72 0.71 0.84 0.97 0.96 0.95 0.95
Netherlands 0.83 0.89 0.87 0.74 0.72 0.76 0.98 0.97 0.96 0.97
EU 0.87 0.96 0.91 0.82 0.90 0.74 0.95 0.95 0.93 0.94

14
Notes. This table shows the pair-wise correlations of optimal R&D allocations γ across countries using country-

speci�c statistics as of 2010. The lower triangular panel shows the Pearson correlation coe�cients; the upper trian-

gular panel shows Spearman’s rank correlation.

Table A.19. Unilaterally Optimal US R&D Allocations of Across TimeTable A.19. Unilaterally Optimal R&D Allocations for US is Highly Correlated over Time

Time Period 2020 2010 2000 1990 1980

2020 1.00 0.99 0.98 0.98
2010 0.99 0.99 0.98 0.98
2000 0.97 0.97 1.00 0.99
1990 0.96 0.94 0.99 1.00
1980 0.94 0.93 0.99 1.00

15

Notes. This table shows the pair-wise correlations of optimal R&D allocations γ across di�erent time periods using

U.S. statistics during the speci�c year. The lower triangular panel shows the Pearson correlation coe�cients; the

upper triangular panel shows Spearman’s rank correlation.
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Figure A.10. U.S. Actual R&D Allocation vs. Optimal AllocationγUS

Figure 4. Optimal R&D Allocations for Different Countries
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Figure 5. U.S. Sectoral R&D and Patent Output Align Well With γUS in 2010

vehicles in general

organic chemistry
engineering elements or units

measuring & testing basic electric elements

0

.025

.05

.075

se
ct

or
al

 s
ha

re
 o

f R
&D

0 .025 .05 .075
optimal sectoral share of R&D allocation

line of fit
45-degree line

vehicles in generalorganic chemistry
engineering elements or units

measuring & testing

basic electric elements

0

.025

.05

.075
se

ct
or

al
 s

ha
re

 o
f p

at
en

ts

0 .025 .05 .075
optimal sectoral share of R&D allocation

line of fit
45-degree line

• Share of R&D: slope = 1.112, t-stat = 7.637, F-stat (beta = 1) = .593

• Share of patents: slope = 1.051, t-stat = 8.203, F-stat (beta = 1) = .159

5

Notes. This �gure adds sector labels to Figure 5 in the paper. It shows scatter plots of real-world sectoral R&D

expenditure shares (left panel) and patent output shares (right panel) against optimal R&D allocation shares, γUS ,

for the U.S. in 2010-2014. The solid line is the linear �t; the dashed line is the 45-degree line. For visual clarity, we

exclude three outlier sectors that account for >7.5% of national R&D shares or national patent output from the scatter

plots, but all sectors are used when constructing the linear �t.
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Figure A.11. Alignment Between Real Allocation and Optimal Allocation Across Countries

Using Alternative Parameter Values

Figure A.10. Sectoral R&D Aligns Well With γm for Some Countries But Poorly for Others in
2010

Using Different (1+ρ/λ )−1

Panel (a): Use (1+ρ/λ )−1 = 0.7
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Panel (c): Use (1+ρ/λ )−1 = 0.9
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16Notes. This table reproduces Figure 6 in the paper with alternative parameter values of ρ/λ.
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Figure A.12. Alignment Between Real Allocation and Optimal Allocation Across Countries

Di�erent Years
Figure A.11. Sectoral R&D Aligns Well With γm for Some Countries But Poorly for Others in

2000 and 2005
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Panel (b): 2005
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17

Notes. This �gure reproduces Figure 6 in the paper using data from alternative years. The �gure shows scatter plots

of sectoral R&D expenditure share in total national R&D expenditures against the optimal sectoral share of R&D

allocation for top ten innovative countries. The solid line is the linear �t; the dashed line is the 45-degree line.
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Figure A.13. Alignment Between Real Allocation and Optimal Allocation Across Countries

Using Sectoral Share of Patents as Real Allocation

Figure A.12. Sectoral R&D Aligns Well With γm for Some Countries But Poorly for Others in
2010

Using Sectoral Share of Patents as Real Allocation
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Figure A.13. Country-Level Welfare Loss
Using Sectoral Share of Patents as Real Allocation
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8

Notes. This �gure reproduces Figure 6 in the paper. The �gure shows scatter plots of sectoral patent output share

in total patent output in the country against the optimal sectoral share of R&D allocation for top ten innovative

countries in 2010. The solid line is the linear �t; the dashed line is the 45-degree line.
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Figure A.14. Country-Level Welfare Loss from Misallocation

Using Sectoral Share of Patents as Real Allocation

Figure A.12. Sectoral R&D Aligns Well With γm for Some Countries But Poorly for Others in
2010

Using Sectoral Share of Patents as Real Allocation
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Figure A.13. Country-Level Welfare Loss
Using Sectoral Share of Patents as Real Allocation
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8

Notes. This table shows the level of R&D misallocation and associated welfare cost during 2010—2014. The table

reproduces Figure 7 in the paper, but uses sectoral share of patents, rather than R&D expenditure shares, as the real

allocation.

Figure A.15. Alignment Between Real Allocation and Optimal Allocation Across Countries

Using OECD R&D Shares as Real Allocation
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Notes. This �gure reproduces Figure 6 in the paper. The �gure shows scatter plots of sectoral R&D share as reported

in the OECD ANBERD database against the optimal sectoral share of R&D allocation for top ten innovative countries

in 2010. The solid line is the linear �t; the dashed line is the 45-degree line.
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Figure A.16. R&D Misallocation and Welfare Cost Across Countries and Over Time

Figure A.14. Sectoral R&D Aligns Well With γm for Some Countries But Poorly for Others in
2010

Using OECD R&D Shares as Real Allocation
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Figure A.16. Welfare Loss Across Countries and Over Time
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9

Notes. This �gure plots the level of misallocation and welfare cost across countries over time. The calculation

focuses on misallocation in top 50 IPC classes by total patents.
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Table A.20. Robustness of γ and Centrality Across Speci�cation of Ω, ρ, and λ
Table A.21. Correlation of Unilaterally Optimal R&D Allocation and Welfare Loss Across

Different Specifications

Average Correlation With Baseline Case

Optimal Allocation γ Centrality a
Specifications Pearson’s r Spearman’s ρ Pearson’s r Spearman’s ρ

A. Alternative Specifications of Ω
A1 Forward-citation weighted Ω 0.9974 0.9994 0.8916 0.9864

A2 Backward-citation weighted Ω 0.9999 0.9999 0.9974 0.9968

A3 Scaled Ω 0.9955 0.9959 0.5228 0.9327

B. Alternative Values of ρ and λ
B1 Using (1+ρ/λ )−1 = 0.4 0.9976 0.9984 - -

B2 Using (1+ρ/λ )−1 = 0.5 0.9986 0.9990 - -

B3 Using (1+ρ/λ )−1 = 0.6 0.9993 0.9996 - -

B4 Using (1+ρ/λ )−1 = 0.7 0.9999 0.9998 - -

B5 Using (1+ρ/λ )−1 = 0.8 1.0000 1.0000 - -

B6 Using (1+ρ/λ )−1 = 0.9 0.9994 0.9997 - -

B7 Using (1+ρ/λ )−1 = 0.95 0.9988 0.9994 - -

C. Industry-Specific λ
C1 ROA (median = 0.1747, s.d. = 0.0268) 0.9982 0.9994 - -

C2 Gross Profit Margin (median = 0.2242, s.d. = 0.0460) 0.9985 0.9995 - -

D. Injecting Measurement Errors into Ω
D1 Adding log-N(0.02, 0.02) noise to Ω 0.9936 0.9934 0.8900 0.8166

D2 Adding log-N(0.04, 0.04) noise to Ω 0.9936 0.9934 0.8199 0.6607

D3 Adding N(0.02, 0.02) noise to Ω 0.9962 0.9944 0.9105 0.8192

D4 Adding N(0.04, 0.04) noise to Ω 0.9951 0.9931 0.8417 0.6696

D5 Adding max{N(0.02, 0.02), 0} noise to Ω 0.9963 0.9945 0.9118 0.8299

D6 Adding max{N(0.04, 0.04), 0} noise to Ω 0.9952 0.9932 0.8506 0.6941

D7 Adding U[0, 0.02] noise to Ω 0.9978 0.9967 0.9453 0.9287

D8 Adding U[0, 0.04] noise to Ω 0.9965 0.9953 0.9252 0.8861

D9 Adding Exp(0.02) noise to Ω 0.9964 0.9942 0.9068 0.8059

D10 Adding Exp(0.04) noise to Ω 0.9952 0.9928 0.8320 0.6597

10

Notes. This table reports the average Pearson and Spearman-rank correlation of γ and centrality of the innovation

networks between the benchmark speci�cation and di�erent sets of alternative innovation network constructions

for Ω (Panel A), alternative values of ρ and λ (Panels B and C), and Ω with injected errors (Panel D). In rows A1 and

A2, we weigh each cite in Ω construction (24) by the quality (total forward citations received) of either the citing

or the cited patent. In row A3, we construct ωij ∝ Citesi→j to scale directly with the total citations totally across

or ij-pairs (rather than normalized by the citations from i), and we choose the proportionality constant so that the

spectral radius of Ω is equal to one, ensuring endogenous growth as in our baseline model. Rows B1 to B4 consider

a range of alternative values for ρ and λ. Changing ρ/λ a�ects, across all countries, the magnitude of the welfare

impact of R&D reallocation, but the cross-country welfare impact still correlates highly with our baseline speci�ca-

tion. Panel C considers a speci�cation with sector-speci�c innovation step size λi. Motivated by the decentralized

economy constructed in Section 2.7.3, where the step size corresponds to the pro�t share, we measure λi using each

sector’s median ROA (return on assets) calculated from our �rm-level datasets, and calculate the corresponding γ
and welfare impact of R&D reallocation using the theoretical extension in Section B.8. Finally, in Panel D, we show

our quantitative analysis is robust to introducing additional, simulated random errors to Ω. For each of the listed

distribution, in each simulation, we add to each element in Ω random and independent terms drawn from the distri-

bution rescale Ω to ensure row sum to be one. For each distribution, we simulate the exercise for 10,000 times, and

the correlations are reported as average of the benchmark with each of the simulated Ω.
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Figure A.17. U.S. R&D Misallocation within 1-digit IPC Classes
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Notes. This �gure shows U.S. R&D misallocation across 3-digit IPC classes within each 1-digit IPC class. Each of the

eight 1-digit IPC categories is represented by a separate panel, in which we show the log-ratio between actual R&D

and the constrained-optimal R&D allocation if a planner can reallocate resources across 3-digit IPC classes within

the 1-digit IPC category.
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