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APPENDIX A: PROOFS

A.1. Proof of claims in Sections 3 and 4

Proof of Proposition 1 The solution to HJB equations (1) through (3) imply that equilib-
rium investment and value functions must satisfy ηs = vs+1 − vs for s ∈ {−1,0,1}. The HJB
equations can thus be re-written as

(r+ ηs/2 + η−s)vs = πs + ηsvs+1/2 + η−svs−1 for s ∈ {−1,0,1} . (A.1)

Substitute using v2 = π2/r, v−2 = π−2/r, v1 = v2−η1, v0 = v2−η1−η0, and v−1 = v2−η1−
η0−η−1, the HJB equations become a system of 3 quadratic equations involving 3 endogenous
variables {η−1, η0, η1} with exogenous parameters {πs} and r. That dηs/dr < 0 follows from
totally differentiating the system of equations and applying the implicit function theorem.

We prove a generalized version of the limiting result that as r→ 0, η1 →∞, η−1 →∞,
and (η1 − η−1)→∞, under a quadratic cost function with a leader disadvantage. Specifically,
define cs = 1 if s < 1 and cs = c if s= 1, and write the HJB equation for state s ∈ {−1,0,1}:

rvs = max
η
πs − csη2/2 + η (vs+1 − vs) + η−s (vs−1 − vs) .

The parameter c is a cost shifter for the leader. The example in Section 3 has c= 1. When c > 1,
leader holds a cost disadvantage relative to the follower. We now prove the limiting result for a
generic c. Optimal investment satisfies η−1 = v0− v−1, η0 = v1− v0, and cη1 = v2− v1. After
substituting these expressions into the HJB equation and then taking the limit r→ 0, we obtain

v1 ∼
η1v2 + 2η−1v0

η1 + 2η−1

, v0 ∼
v1 + 2v−1

3
, v−1 ∼

η−1v0 + 2η1v−2

η−1 + 2η1

,

where we use x ∼ y to denote limr→0 (x− y) = 0. Using optimal investment decisions to
substitute out v−1, v0 and v1, we obtain

cη1 ∼
8η−1 (v2 − v−2)

6η1 + 9η−1

, η−1 ∼
2η1 (v2 − v−2)

6η1 + 9η−1

,
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thereby implying cη2
1 ∼ 4η2

−1. As r→ 0, v2 − v−2→∞, implying that η1→∞, η−1→∞,
and (η1 − η−1)→∞ if and only if c < 4. In particular, when the leader does not have a cost
disadvantage (c= 1), the difference between leader and follower investment diverges.

Proof of Lemmas 4.1 and 4.2 The CES demand within each market implies that the market

share of firm i is δi ≡ piyi
p1y1+p2y2

=
p1−σi

p1−σ1 +p1−σ2

. Under Bertrand competition, the price of a firm

with productivity zi must solve pi = σ(1−δi)+δi
(σ−1)(1−δi)

λ−zi , with markup mi ≡ pi
λ−zi

= σ(1−δi)+δi
(σ−1)(1−δi)

and profits πi = δi

(
pi−λ−zi

pi

)
. Now define ρs as the relative price between leader and follower

in a market with productivity gap s. Taking ratios of the prices and re-arrange, we derive that

ρs must solve ρσs = λ−s
(σρσ−1

s +1)
σ+ρσ−1

s
. Market share is therefore δs =

ρ1−σs

ρ1−σs +1
for the leader and

δ−s = 1

ρ1−σs +1
for the follower and profits are πs = 1

σρσ−1
s +1

and π−s =
ρσ−1
s

σ+ρσ−1
s

, respectively.

Leader’s markup is ms =
σ+ρ1−σs

σ−1
and follower’s markup is m−s =

σρ1−σs +1

(σ−1)ρ1−σs
.

The fact that follower’s flow profits are convex in s follows from algebra. Moreover,
lims→∞ ρ

σ
sλ

s = 1/σ; hence, for large s, πs ≈ 1

σ
1
σ λ
−σ−1

σ
s
+1

and π−s ≈ 1

σ
2σ−1
σ λ

σ−1
σ

s
+1

. The

eventual concavity of πs and (πs + π−s) as s→∞ is immediate. Also note that, as s→∞,
πs→ 1, π−s→ 0, ms→∞, m−s→ 0.

Proof of Lemma 4.5 The expression g = lnλ (
∑∞

s=0 µsηs + µ0η0) shows that aggregate
growth is equal to lnλ times the weighted-average investment rate of firms at the frontier—
leaders and neck-and-neck firms. In a steady-state, the growth rate of the productivity frontier
must be the same as the growth rate of followers; hence, aggregate growth rate g can also be
written as g = lnλ (

∑∞
s=1 µs (η−s + κ)).

To prove the expression formally, we proceed in two steps. First, we express aggregate pro-
ductivity growth as a weighted average of productivity growth in each market. We then use the
fact that, given homothetic within-market demand, if a follower in state s improves productiv-
ity by one step (i.e. by a factor λ) and a leader in state s− 1 improves also by one step, the net
effect is equivalent to one step improvement in the overall productivity of a single market.

Let p (ν) ≡
[
p1 (ν)1−σ + p2 (ν)1−σ] 1

1−σ be the price index of a single market ν. We can
equivalently index for markets not using ν but instead using (s, zF ), the productivity gap and
the productivity of the follower. The growth rate g of aggregate productivity defined in (12) is
equal to −d lnP

dt
, where P is the ideal consumer price index, and can be written as:

g ≡ d lnλZ

dt
=−d lnP

dt
=−

d

∫ 1

0

lnp (ν)dν

dt
=−

∞∑
s=0

µs ×
d

[∫
zF

lnp
(
s, zF

)
dF
(
zF
)]

dt
.

Now recognize that productivity growth rate in each market, −d lnp(s,zF )
d ln t

, is a function of
only the productivity gap s and is invariant to the productivity of follower, zF . Specifically,
suppose the follower in market (s, zF ) experiences an innovation, the market price index be-
comes p (s− 1, zF + 1). If instead the leader experiences an innovation, the price index be-
comes p (s+ 1, zF ). The corresponding log-changes in price indices are respectively

aFs ≡ lnp
(
s− 1, zF + 1

)
− lnp

(
s, zF

)
=− lnλ+ ln

[
ρ1−σ
s−1 + 1

] 1
1−σ − ln

[
ρ1−σ
s + 1

] 1
1−σ ,

aLs ≡ lnp
(
s+ 1, zF

)
− lnp

(
s, zF

)
= ln

[
ρ1−σ
s+1 + 1

] 1
1−σ − ln

[
ρ1−σ
s + 1

] 1
1−σ ,
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where ρs is the implicit function defined in the proof for Lemma 1. The log-change in price
index is independent of zF in either case. Hence, over time interval [t, t+ ∆], the change in
price index for markets with state variable s at time t follows

∆ lnp
(
s, zF

)
=

{
aLs with probability ηs∆,
aFs with probability (η−s + κ · 1 (s 6= 0)) ∆.

The aggregate productivity growth can therefore be written as

g =−µ02η0a0 −
∞∑
s=1

µs ×
(
ηsa

L
s + (η−s + κ)aFs

)
,

where a0 ≡ aF0 = aL0 . Finally, note if both leader and follower in a market experiences produc-
tivity improvements, regardless of the order in which these events happen, the price index in
the market changes by a factor of λ−1: aFs + aLs−1 = aLs + aFs+1 =− lnλ for all s≥ 1. Hence,

g =−µ02η0a0 −
∞∑
s=1

µs ×
(
ηsa

L
s + (η−s + κ)aFs

)
=−µ02η0a0 −

∞∑
s=1

µs ×
(
ηsa

L
s + (η−s + κ)

(
− lnλ− aLs−1

))
= lnλ ·

∞∑
s=1

µs (η−s + κ)−

(
∞∑
s=1

µs ×
(
ηsa

L
s − aLs−1 (η−s + κ)

)
+ µ02η0a0

)
.

Given that steady-state distribution {µs} must follow equations (10) and (11), we know

∞∑
s=1

µs ×
(
ηsa

L
s − aLs−1 (η−s + κ)

)
+ µ02η0a0 =

∞∑
s=1

µsηsa
L
s + µ02η0a0 −

(
∞∑
s=1

µsa
L
s−1 (η−s + κ)

)
=0

.

Hence aggregate growth rate simplifies to g = lnλ ·
∑∞

s=1 µs (η−s + κ), which traces the
growth rate of productivity laggards. We can also apply equations (10) and (11) again to express
productivity growth as a weighted average of frontier growth: g = lnλ · (

∑∞
s=1 µsηs + 2µ0η0) .

A.2. An example with leapfrogging

“No-sudden-leapfrog” is the source of strategic asymmetry in the paper. We extend the ex-
ample in Section 3 to allow for partial leapfrogging show a strict form of “no-leapfrog” is
not necessary for strategic asymmetry. Suppose upon a successful innovation, the follower can
jump from state −1 to state 2 with probability p, and to state 0 with probability 1− p. The HJB
equations can be written as

rv1 = max
η
π1 − η2/2 + η (v2 − v1) + η−1 ((1− p)v0 + pv−2 − v1) (A.2)
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rv0 = max
η
π0 − η2/2 + η (v1 − v0) + η0 (v−1 − v0) (A.3)

rv−1 = max
η
π−1 − η2/2 + η [(1− p) (v0 − v−1) + p (v2 − v−1)] + η1 (v−2 − v−1) (A.4)

The HJB equations reflect the fact that with probability p, follower’s innovation raises fol-
lower’s value to v2 and knocks leader’s value down to v−2. The model in Section 3 corresponds
to the case where p= 0.

Using the same proof strategy as for Proposition 1, one can show that as r→ 0, equilibrium
investment η1 and η−1 both diverge to infinity, and their ratio, x ≡ η1/η−1, must satisfy the
following cubic equation:

(1 + 2p)x3 + 2p (2 + p)x2 − 2 (2 + p)x− p (1 + 2p) = 0.

For all p < 1, the positive solution to the cubic equation always features x > 1, implying that
(η1 − η−1)→∞. That is, unless the follower always leapfrogs with probability p = 1, the
leader-follower strategy asymmetry that we highlight is always present, and the leader always
responds to low interest rates more than the follower.

A.3. Proof of claims in Sections 5.2 and 5.3

Section 5 maintains the assumption that investment cost is linear, c (ηs) = c ·ηs for ηs ∈ [0, η].
As discussed in Section 4.2, we assume the investment space is sufficiently large—cη > π∞
and η > κ—so that firms can compete intensely if they choose to—and c is not prohibitively
high relative to the gains from becoming a leader (cκ < π∞ − π0)—otherwise no firm has any
incentive to ever invest.

Proof of Lemma 5.1 Recall n+ 1 ≡min{s|s≥ 0, ηs < η} is the first state in which mar-
ket leaders choose not to invest, and k + 1 ≡min{s|s≤ 0, ηs < η} is the first state in which
followers choose not to invest. Suppose n < k, i.e. leader invests in states 1 through n whereas
follower invests in states 1 through at least n+ 1. We first show that, if these investment de-
cisions were optimal, the value functions of both leader and follower in state n + 1 must be
supported by certain lower bounds. We then reach for a contradiction, showing that, if n < k,
then market power is too transient to support these lower bounds on value functions.

The HJB equation for the leader in state n+ 2 implies

rvn+2 = max
ηn+2∈[0,η]

πn+2 + ηn+2 (vn+3 − vn+2 − c) + (η−(n+2) + κ) (vn+1 − vn+2)

≥ πn+2 + (η+ κ) (vn+1 − vn+2) . (A.5)

That leader does not invest in s= n+ 1 implies c≥ vn+2− vn+1; combining with (A.5) to get

rvn+1 ≥ πn+2 − c (η+ κ+ r) .

The HJB equation for the follower in state n+ 1 implies

rv−(n+1) = max
η−(n+1)∈[0,η]

π−(n+1) + (η−(n+1) + κ) (v−n − v−(n+1))− cη−(n+1)

≥ π−(n+1) + κ (v−n − v−(n+1)) . (A.6)
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That follower invests in s= n+ 1 implies c≤ v−n − v−(n+1); combining with (A.6) to get

rv−(n+1) ≥ π−(n+1) + cκ. (A.7)

Combining this with the earlier inequality involving rvn+1, we obtain an inequality on the joint
value wn+1 ≡ vn+1 + v−(n+1):

rwn+1 ≥ πn+2 + π−(n+1) − c (η+ r) (A.8)

We now show that inequalities (A.7) and (A.8) cannot both be true. To do so, we construct
alternative economic environments with value functions ŵ(0)

1 and v̂(0)
−1 such that ŵ(0)

1 ≥ wn+1

and v̂(0)
−1 ≥ v−(n+1); we then show that even these dominating value functions ŵ(0)

1 and v̂(0)
−1

cannot satisfy both inequalities.
First, fix n and fix investment strategies (leader invests until state n+ 1 and follower invests

at least through n + 1); suppose for all states 1 ≤ s ≤ n + 1, follower’s profits are equal to
π−(n+1) and leader’s profits are equal to πn+2; two firms each earn

π−(n+1)+πn+2

2
in state

zero. The joint profits in this modified economic environment are independent of the state by
construction; moreover, the joint flow profits always weakly dominate those in the original
environment and strictly dominate in state zero (πn+2 + π−(n+1) ≥ π1 + π−1 > 2π0). Let ŵs
denote the value function in the modified environment; ŵs >ws for all s≤ n+ 1.

Consider the joint value in this modified environment but under alternative investment strate-
gies. Let n̄ index for investment strategies: leader invests in states 1 through n̄ whereas
the follower invests at least through n̄ + 1. Let ŵ(n̄)

s denote the joint value in state s un-
der investments indexed by n̄. We argue that ŵ(n̄)

n̄+1 is decreasing in n̄. To see this, note
the joint flow payoffs in all states 0 through n̄ is constant by construction and is equal to
x ≡ (πn+2 + π−(n+1) − 2cη)—total profits net of investment costs—and the joint flow pay-
off in state n̄ + 1 is (πn+2 + π−(n+1) − cη) = x + cη. ŵ(n̄)

n̄+1 is equal to a weighted aver-
age of x/r and (x+ cη)/r, and the weight on (x+ cη)/r is higher when n̄ is smaller.
Hence, ŵ(n̄)

n̄+1 is decreasing in n̄, and that ŵ(0)
1 ≥ ŵ

(n)
n+1 > wn+1. The same logic also implies

v̂(0)
0 = 1

2
ŵ(0)

0 > 1
2
w0 = v0.

Consider follower’s value v̂(0)
−1 in the alternative environment, when investment strategies are

indexed by zero, i.e. firms invest in states 0 and −1 only. We know v̂(0)
−1 must be higher than

v−(n+1) because

v̂(0)
−1 =

π−(n+1) − cη+ κv̂(0)
0

r+ κ+ η
>
π−(n+1) − cη+ κv0

r+ κ+ η
≥
π−(n+1) − cη+ κv−n

r+ κ+ η
= v−(n+1).

We now show that inequalities rv̂(0)
−1 ≥ π−(n+1) +cκ and rŵ(0)

1 ≥ πn+2 +π−(n+1)−c (η+ r)
cannot both hold. We can explicitly solve for the value functions from the HJB equations:

ŵ(0)
0 =

πn+2 + π−(n+1) − 2cη+ 2ηŵ(0)
1

r+ 2η

ŵ(0)
1 =

πn+2 + π−(n+1) − cη+ (η+ κ) ŵ(0)
0

r+ η+ κ

v̂(0)
−1 =

π−(n+1) − cη+ (η+ κ) ŵ(0)
0 /2

r+ η+ κ
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Solving for ŵ(0)
1 and v̂(0)

−1 , we obtain

rŵ(0)
1 = πn+2 + π−(n+1) − cη

(
1 +

η+ κ

r+ 3η+ κ

)

(r+ η+ κ) rv̂(0)
−1 = r (π−(n+1) − cη) + (η+ κ)

(
πn+2 + π−(n+1)

2
− cη r+ 2η+ κ

r+ 3η+ κ

)
That rv̂(0)

−1 ≥ π−(n+1) + cκ implies

(r+ η+ κ) rv̂(0)
−1 = r (π−(n+1) − cη) + (η+ κ)

(
πn+2 + π−(n+1)

2
− cη r+ 2η+ κ

r+ 3η+ κ

)
≥ (r+ η+ κ) (π−(n+1) + cκ)

=⇒ (η+ κ)

(
πn+2 − π−(n+1)

2
− cη r+ 2η+ κ

r+ 3η+ κ

)
≥ (r+ η+ κ) cκ+ cηr

Since
πn+2−π−(n+1)

2
≤ πn+2

2
< cη, it must be the case that

(η+ κ) cη > (r+ η+ κ) cκ+ cηr+ (η+ κ) cη
r+ 2η+ κ

r+ 3η+ κ
.

On the other hand, that rŵ(0)
1 ≥ πn+2 + π−(n+1) − c (η+ r) implies r ≥ η η+κ

r+3η+κ
; hence the

previous inequality implies

(η+ κ) cη > (r+ η+ κ) cκ+ (η+ κ) cη
η

r+ 3η+ κ
+ (η+ κ) cη

r+ 2η+ κ

r+ 3η+ κ

= (r+ η+ κ) cκ+ (η+ κ) cη,

which is impossible; hence n≥ k.
We now show that the follower does not invest in states s ∈ {k+ 1, ..., n+ 1}. First, note

(r+ η+ κ) (v−s − v−s−1) = π−s − π−s−1 + κ (v−s+1 − v−s) + η (v−s−1 − v−s−2)

+ max{η (v−s+1 − v−s − c) ,0} −max{η (v−s − v−s−1 − c) ,0} .

Suppose v−s+1 − v−s ≥ (v−s − v−s−1), then

(r+ η+ κ) (v−s − v−s−1)≥ π−s − π−s−1 + κ (v−s+1 − v−s) + η (v−s−1 − v−s−2)

=⇒ (r+ η) (v−s − v−s−1)≥ π−s − π−s−1 + η (v−s−1 − v−s−2) .

If v−s+1 − v−s < (v−s − v−s−1), then

(r+ η) (v−s − v−s−1)< π−s − π−s−1 + η (v−s−1 − v−s−2)

+ max{η (v−s+1 − v−s − c) ,0} −max{η (v−s − v−s−1 − c) ,0}

≤ π−s − π−s−1 + η (v−s−1 − v−s−2) .
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To summarize, for all s,

v−s+1−v−s ≥ (v−s − v−s−1) ⇐⇒ (r+ η) (v−s − v−s−1)≥ π−s−π−s−1 +η (v−s−1 − v−s−2)
(A.9)

Now suppose η−k−1 = 0 but η−s′ = η for some s′ ∈ {k+ 2, ..., n+ 1}. This implies

v−(k−1) − v−k ≥ c > v−k − v−k−1 < v−s′+1 − v−s′ ,

implying there must be at least one s ∈ {k+ 2, ..., n+ 1} such that v−s+1 − v−s ≥ v−s −
v−s−1 < v−s−1 − vs−2. Applying (A.9),

(r+ η) (v−s − v−s−1)≥ π−s − π−s−1 + η (v−s−1 − v−s−2) (A.10)

(r+ η) (v−s−1 − v−s−2)< π−s−1 − π−s−2 + η (v−s−2 − v−s−3) (A.11)

Inequality (A.10) and v−s− v−s−1 < v−s−1− v−s−2 implies r (v−s − v−s−1)> π−s−π−s−1;
convexity in follower’s profit functions further implies r (v−s − v−s−1)> π−s−1−π−s−2. Sub-
stitute into inequality (A.11), and using the fact v−s−v−s−1 < v−s−1−vs−2, we deduce it must
be the case that (v−s−2 − vs−3)> (v−s−1 − v−s−2). Applying (A.9) again,

(r+ η) (v−s−2 − v−s−3)< π−s−2 − π−s−3 + η (v−s−3 − v−s−4) .

That r (v−s−2 − v−s−3)> π−s−2−π−s−3 further implies (v−s−3 − v−s−4)> (v−s−2 − v−s−3).
By induction, we can show vs−1 − vs−2 < vs−2 − vs−3 < · · ·< v−n − v−(n+1). But

(r+ η+ κ) (v−n − v−(n+1))≤ π−n − π−(n+1) + κ (v−n+1 − v−n) + η (v−n+1 − v−n+1)

=⇒ (r+ η) (v−n − v−(n+1))≤ π−n − π−(n+1)

which is a contradiction, given convexity of the profit functions. Hence, we have shown v−k −
v−(k+1) ≥ v−s − v−s−1 for all s ∈ {k+ 1, ..., n+ 1}, establishing that follower cannot invest
in these states.

Proof of Lemma 5.2 Given the cutoffs (n,k), aggregate productivity growth is (from
Lemma 4.5) g = lnλ · (

∑n

s=1 µsη+ 2µ0η) . The steady-state distribution must follow

µsη =


µ1 (η+ κ)/2 if s= 0

µs+1 (η+ κ) if 1≤ s≤ k− 1

µs+1κ if k ≤ s≤ n+ 1

0 if s > n+ 1

(A.12)

Hence we can rewrite the aggregate growth rate as

g = lnλ ·

(
2µ0η+

k−1∑
s=1

µsη+
n∑

s=k−1

µsη

)

= lnλ ·

(
µ1 (η+ κ) +

k∑
s=2

µs (η+ κ) +

n+1∑
s=k

µsκ

)
= lnλ ·

(
µC (η+ κ) + µMκ

)
,
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as desired. To solve for µ0, µC , and µM as functions of n and k, we use (A.12) to write µs as
a function of µn+1 for all s. Let α≡ κ/η, then

µs =


µn+1α

n+1−s if n+ 1≥ s≥ k
µn+1α

n+1−k (1 + α)k−s if k− 1≥ s≥ 1

µn+1α
n+1−k (1 + α)k /2 if s= 0

Hence µ0 = µn+1α
n+1−k (1 + α)k /2. The share of markets in the competitive and monopolis-

tic regions can be written, respectively, as

µM = µn+1

n+1∑
s=k+1

αn+1−s = µn+1

1− αn−k+1

1− α
,

µC = µn+1α
n+1−k

k∑
s=1

(1 + α)k−s = µn+1α
n−k

(
(1 + α)k − 1

)
.

Proof of Lemma 5.3 Given k ≥ 1, the share of markets in the competitive region is

µC =
k∑
s=1

µs = µ1 + µ1 (1 + α)−1︸ ︷︷ ︸
=µ2

+ · · ·+ µ1 (1 + α)−(k−1)︸ ︷︷ ︸
=µk

= µ0

κ+ η

2η︸ ︷︷ ︸
=µ1

1− (1 + α)−k

1− (1 + α)−1 ≥ µ0

κ+ η

2η

Aggregate growth rate can be re-written as

g = lnλ ·
[
(1− µ0)κ+ µCη

]
≥ lnλ ·

[
(1− µ0)κ+ µ0

κ+ η

2

]
≥ lnλ · κ.

Aggregate investment is I = 2η (µC + µ0) + η (µM − µn+1). In a steady-state, it must be that
2ηµ0 + η (µM − µn+1) = (η+ κ)µC + κµM , thus I = 2ηµC + κ (1− µ0)≥ κ, as desired.

A.4. Proof of claims in Section 5.4

Consider the following recursive equations of value functions {us}∞s=−∞:

rus+1 = λs+1 + ps+1 (us − us+1) + q (us+2 − us+1) (A.13)

where λs+1 is the flow payoff, ps+1 and q are respectively the Poisson rate of transition from
state s + 1 into state s and state s + 2. Given us and ∆us ≡ us+1 − us, we can solve for
all us+t, t > 0 as recursive functions of us and ∆us. The recursive formulation generically
does not have a closed-form representation. However, as r→ 0, the value functions do admit
asymptotic closed form expressions, as Proposition A.1 shows. In what follows, let ∼ denote
asymptotic equivalence as r→ 0, i.e. x∼ y iff limr→0 (x− y) = 0.
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Proposition A.1. Consider value functions {us}∞s=−∞ satisfying (A.13). Fix state s and
integer t > 0. Suppose λs′ ≡ λ and ps′ ≡ p for all states s ≤ s′ ≤ t. Let δ ≡ rus−λ

q
, a ≡ p

q
,

b≡ r
q

, then for all t > 0,

us+t − us ∼ (∆us)
1 − at

1 − a
+ δ

t− a− at

1 − a
1 − a

+∆us · b
(t− 1)

(
1 + at

)
(1 − a) − (2 − a)

(
at − a

)
(1 − a)3 (A.14)

+δb
1

(1 − a)3

((
(t− 2) (t− 1)

2
+ 2a

)
(1 − a) − (t− 3)at − a (2 − a) (t− 1)

)

us+t − us+t−1 ∼ ∆usa
t−1 + δ

1 − at−1

1 − a
+ ∆usb

(
(t− 1)

(
1 + at

)
− (t− 2)

(
1 + at−1

))
(1 − a)2

−∆usb

(
(2 − a)

(
at − at−1

))
(1 − a)3 +

δb

(1 − a)2

(t− 2) (t− 1) − (t− 2) (t− 3)

2

− δb

(1 − a)3 (t− 3)at + (t− 4)at−1 − a (2 − a)

)
. (A.15)

If t→∞ as r→ 0, then the formulas can be simplified as follows:
1. If a < 1, then us+t − us+t−1 ∼∆usa

t−1 + δ
1−a + b∆us

(1−a)2
; further,

(a) if r∆us→ 0, then us+t − us ∼∆us
1

1−a + tδ
1−a ;

(b) if r∆us 6→ 0, then r (us+t − us)∼ r∆us
1−a .

2. Suppose a > 1 and r∆us→ 0.
(a) If ∆us + δ

a−1
6∼ 0, then r (us+t − us)∼

(
∆us + δ

a−1

)
rat

a−1
and

r (us+t − us+t−1)∼
(

∆us + δ
a−1

)
rat−1.

(b) If ∆us + δ
a−1
∼ 0, then us+t − us ∼− bδ

(1−a)4
· at+1.

Suppose λs′ and ps′ are state-dependent. Let λ≥ λs′ and p≤ ps′ for all s≤ s′ ≤ t. The formu-
las in (A.14) and (A.15) provide asymptotic lower bounds for us+t − us+t−1 and us+t − us.
Conversely, if λ ≤ λs′ and p ≥ ps′ for all s ≤ s′ ≤ t, then the formulas provide asymptotic
upper bounds for us+t − us+t−1 and us+t − us.

REMARK: Proposition A.1. expresses us+t and ∆us+t as functions of us and ∆us. One can
also apply the Proposition write us and ∆us as functions of ∆us+t and us+t. Proposition A.1.
thus enables us to solve for value functions asymptotically, and we apply it repeated throughout
the rest of this appendix.

Proof of Proposition A.1. First suppose λs′ ≡ λ and ps ≡ p are constant for all states s≤
s′ ≤ t. Given us and ∆us, we can solve for value functions us+t as

us+1 − us = ∆us{
us+2 − us+1 = a∆us + b∆us + δ

us+2 − us = (1 + a) ∆us + b∆us + δ
(A.16)
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us+3 − us+2 = a2∆us + (1 + 2a) b∆us + (1 + a) δ + o (r)

us+3 − us = (1 + a+ a2) ∆us + (1 + 1 + 2a) b∆us + (1 + 1 + a) δ + bδ+ o (r)

where o (r) are terms that vanish as r→ 0. Applying the formula iteratively, we find

us+t+1 − us+t = at∆us + δ
t−1∑
z=0

az + b∆us

t∑
z=1

zaz−1 + bδ
t−1∑
z=1

z∑
m=1

mam−1 + o (r)

us+t+1−us = ∆us

t∑
z=0

az+δ
t∑

z=0

z−1∑
m=0

am+b∆us

t∑
z=1

z∑
m=1

mam−1 +bδ
t−1∑
x=1

x∑
z=1

z∑
m=1

mam−1 +o (r)

One obtains the proposition by applying the following formulas for power series summations:
1.
∑t

z=0 a
z = 1−at+1

1−a ;

2.
∑t

z=0

∑z−1

m=0 a
m =

t+1−a−a
t+1

1−a
1−a ;

3.
∑t

z=1

∑z

m=1ma
m−1 =

t(1+at+1)(1−a)−(2−a)(at+1−a)
(1−a)3

;

4.
∑t−1

x=1

∑x

z=1

∑z

m=1ma
m−1 = 1

(1−a)3

(
t(t−1)+4a

2
(1− a)− (t− 2)at+1 − a (2− a) t

)
.

Now suppose λs and ps are state-dependent, and λ ≥ λs′ , p ≤ ps′ for all s ≤ s′ ≤ t. Let
δs ≡ rus−λs

q
, as ≡ ps

q
and note δs > δ ≡ rus−λ

q
, as > a. By re-writing equations in this proof

as inequalities (e.g. rewrite (A.16) as us+2 − us+1 > a∆us + b∆us + δ and us+2 − us >
(1 + a) ∆us+ b∆us+ δ), the formulas in the Proposition provide asymptotic lower bounds for
us+t − us+t−1 and us+t − us as functions of us and ∆us. Conversely, if λ≤ λs′ and p≥ ps′
for all s ≤ s′ ≤ t, then the formulas provide asymptotic upper bounds for us+t − us+t−1 and
us+t − us. QED.

Proof of Lemma 5.4 Recall n and k are the last states in which the leader and the follower,
respectively, chooses to invest in an equilibrium. Both n and k are functions of the interest rate
r. Also recall that we use ws ≡ vs + v−s to denote the total firm value of a market in state s.

We first prove limr→0 n =∞. Consider the sequence of value functions v̂s generated by
an alternative sequence investment decisions: leader follows equilibrium strategies and invests
in n states whereas follower does not invest in any state. Under these alternative investments,
flow payoff is higher in every state, hence the joint value of both firms is higher in every state—
including state 0—thus v̂0 ≥ v0. One can further show by induction that the alternative value
functions dominate the equilibrium value functions (v̂s ≥ vs) for all s≥ 0; intuitively, leader’s
value is higher in any state because it expects to spend more time in higher payoff states,
since the follower does not invest. Also by induction one can show ∆vs ≥∆v̂s for all s≥ 0;
intuitively, when the follower does not invest, leader has less of an incentive to invest as well.

Now suppose n is bounded, and we look for a contradiction. Let N be the smallest integer
such that (1) N > n for all r, and (2) πN − π0 > cκ. Note rvN = r · πN+κvN−1

r+κ
→ rvN−1

as r→ 0; hence rvN ∼ rvN−1. By induction, because N is finite, rvs ∼ rvt ∼ rv−s for any
s, t ≤ N . Likewise, rv̂s ∼ rv̂t for any s, t ≤ N . The fact that leader does not invest in state
N − 1 implies limr→0 (vN − vN−1) < c =⇒ limr→0 rvN−1 > πN − cκ, which further im-
plies limr→0 rv̂0 ≥ limr→0 rv0 = limr→0 rvN−1 > πN − cκ. Also note that ∆v̂0 > ∆ŵ0 =
rŵ1−(2π0−2cη)

r+2η
→ rŵ0−(2π0−2cη)

2η
= rv̂0−(π0−cη)

η
. We now put these pieces together and apply

Proposition A.1 to compute a lower bound for ∆v̂n as a function of v̂0 and ∆v̂0 (substitute
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us = v̂0, us+t = v̂N , a= κ/η, b= r/η, δ = rv̂0−(πN−cη)

η
):

lim
r→0

∆v̂N ≥ lim
r→0

(
∆v̂0 (κ/η)N−1 +

rv̂0 − (πN − cη)

η

1 − (κ/η)N−1

1 − κ/η

)
> lim

r→0

rv̂0 − (π0 − cη)

η
(κ/η)N−1 +

rv̂0 − (πN − cη)

η

1 − (κ/η)N−1

1 − κ/η

> lim
r→0

πN − cκ− (π0 − cη)

η
(κ/η)N−1 +

πN − cκ− (πN − cη)

η

1 − (κ/η)N−1

1 − κ/η

> lim
r→0

c (κ/η)N−1 +
c (η− κ)

η

1 − (κ/η)N−1

1 − κ/η
= c

where the last inequality follows the fact that πN−π0 > cκ. Thus limr→0 ∆vN ≥ limr→0 ∆v̂N >
c and the leader must invest in state N , a contradiction.

Next, suppose limr→0 k =∞ but (n− k) remain bounded. Let ε≡2cη− π∞ > 0. The joint
flow payoff πs + π−s − 2cη is negative and bounded above by −ε in all states s ≤ k. As
k →∞, if n − k remain bounded, then there are arbitrarily many states in which the total
flow payoffs for both firms is negative and only finitely many states in which the flow payoffs
may be positive. The firm value in state 0 is therefore negative. Since firms can always ensure
non-negative payoffs by not taking any investment, this cannot be an equilibrium, reaching a
contradiction. Hence limr→0 (n− k) =∞.

To show limr→0 k =∞, we first establish a few asymptotic properties of the model.

Lemma A.1. (1) rvn ∼ π∞ − cκ; (2) vn+1 − vn ∼ c; (3) r (n− k)∼ 0; (4) rk ∼ 0.

Proof. (1) The fact that leader invests in state n but not in state n+ 1 implies

πn+2 − rvn+1

r+ κ
= vn+2 − vn+1 ≤ c≤ vn+1 − vn =

πn+1 − rvn
r+ κ

=⇒ π∞ − cκ= lim
r→0

(πn+2 − cκ)≥ lim
r→0

rvn ≥ lim
r→0

(πn+1 − cκ) = π∞ − cκ, Q.E.D.

(2) The claim follows from the previous one: vn+1 − vn =
πn+1−rvn

r+κ
∼ π∞−rvn

κ
∼ c.

(3) The previous claims show rvn ∼ π∞ − cκ and ∆vn ∼ c. We apply Proposition A.1 to
iterate backwards and obtain a lower bound for (vk − vn):

lim
r→∞

r (vk − vn)≥ lim
r→∞

− r
2

κ2

rvn − (π∞ − cη)

(1− η/κ)4 (η/κ)n−k+1 ∼− r
2

κ2

c (η− κ)

(1− η/κ)4 (η/κ)n−k+1

Since |limr→0 r (vk − vn)| ≤ π∞, limr→0 r
2 (η/κ)n−k+1 must remain bounded, implying

r (n− k)∼ 0.
(4) We apply Proposition A.1 to find a lower bound for wk −w0 (where a≡ η/κ > 1):

lim
r→0

r (wk −w0)≥ lim
r→0

(
∆w0 +

rw0 − (π∞ − 2cη)

a− 1

)
rak

a− 1
≥ lim
r→0

(
2cη− π∞
a− 1

)
rak

a− 1
.

Since r (wk −w0) is bounded, it must be that rak is bounded; therefore rk ∼ 0. QED.

Lemma A.2. rv−k ∼ r∆v−k ∼ rv−n ∼∆v−n ∼ 0.



12

Proof. First, note that follower not investing in state k+ 1 implies c≥∆v−(k+1). We apply
Proposition A.1 to find an upper bound for (v−n − v−k) as a function of rv−k and ∆v−(k+1):

v−n − v−k ≤ limr→0

(
−∆v−(k+1)

η

η−κ + (n− k)
rv−k
η−κ

)
, which implies r (v−n − v−k) ∼ 0.

Let m ≡ floor(n+k
2

). That the follower does not invest in state m implies c ≥∆v−m. Propo-
sition A.1. provides a lower bound for v−(n+1) − v−n as a function of rv−m and ∆v−m−1:
limr→0 (v−(n+1) − v−n)≥ limr→0−∆v−(m+1) (κ/η)n−m+

rv−m−π−m
η−κ = limr→0

rv−m
η−κ ,where

the equality follows from limr→0 (κ/η)n−m = 0 and limr→0 π−m→ 0. Since the LHS is non-
positive, it must be the case that limr→0 ∆v−n = limr→0 rv−m = 0. But since rv−n ≤ rv−m,
it must be that rv−n ∼ 0, which, together with rv−n ∼ rv−k, further implies rv−k ∼ 0. That
r∆v−k ∼ 0 follows directly from the HJB equation for state k. QED.

We now prove limr→0 k =∞. We show k bounded =⇒ rwk ∼ r∆wk ∼ 0, and we look
for a contradiction. First, we use the fact that 0≤ π−s for all 0≤ s≤ k and apply Proposition
A.1 (simplification 1a, substituting us ≡ v−k+1, us+t = v0, t= k+ 1, ∆us = ∆v−k, a= η

η+κ
,

b= r
η+κ

, δ =
rv−(k+1)−(−cη)

η+κ
) to find an asymptotic upper bound for rv0:

lim
r→0

rv0 = lim
r→0

r (v0 − v−(k+1))≤ lim
r→0

r

1− κ/η

(
∆v−(k+1) + k

rv−(k+1) + cη

η

)
By Lemma A.1(4) and Lemma A.2, the RHS converges to 0, implying rv0 ∼ rw0 ∼ 0. Further,
using the HJB equation for state 0, we find that ∆w0 ≡w1 −w0 = rw0+2cη−2π0

2η
∼ c− π0/η.

Lower and upper bounds for rwk and r∆wk can be found, as functions of ∆w0 and rw0,
using Proposition A.1 (simplification 2(a), substituting us ≡ w0, us+t = wk, t = k, ∆us =

∆w0, a = η+κ

η
, b = r

η
, and δ = rw0−(−2cη)

η
for the upper bound, δ = rw0−(π∞−2cη)

η
for the

lower bound):

lim
r→0

(
∆w0 +

rw0 + 2cη− π∞
κ

)
η

κ
r

(
η+ κ

η

)k
≤ lim

r→0
(rwk − rw0) (A.17)

≤ lim
r→0

(
∆w0 +

rw0 + 2cη

κ

)
η

κ
r

(
η+ κ

η

)k

lim
r→0

(
∆w0 +

rw0 + 2cη− π∞
κ

)
r

(
η+ κ

η

)k−1

≤ lim
r→0

(r∆wk) (A.18)

≤ lim
r→0

(
∆w0 +

rw0 + 2cη

κ

)
r

(
η+ κ

η

)k−1

.

If k is bounded, these inequalities imply rwk ∼ r∆wk ∼ 0.
Now suppose rwk ∼ r∆wk ∼ 0 and we look for a contradiction. Let k̂ ≡max{k,N} where

N is the smallest integer such that πN − π0 > cκ. That |N − k| is finite and rwk ∼ r∆wk ∼ 0

jointly imply rwN ∼ r∆wN ∼ 0. Note that πk̂ is a lower bound for πs for all n ≥ s ≥ k̂; we
apply Proposition A.1 (simplification 1, substituting us ≡ wk̂, us+t = wn+1, t = n + 1 − k̂,

∆us = ∆wk̂, a= κ
η

, b= r
η

, δ =
rw
k̂
−(πk̂−cη)
η

) and obtain
rw
k̂
−(πk̂−cη)
η−κ as an asymptotic upper

bound for wn+1 −wn. Lemma A.1 part 2 further implies that

lim
r→0

rwk̂ − (πk̂ − cη)

η− κ
≥ c ⇐⇒ lim

r→0
rwk̂ ≥ πk̂ − cκ > 0. (A.19)
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This contradicts the presumption that rwk̂ ∼ 0. QED.
Note that (A.17), (A.18), and the contradiction above jointly imply limr→0 rwk > 0,

limr→0 r∆wk > 0, and that r
(
η+κ

η

)k
converges to a positive constant, summarized as a

Lemma.

Lemma A.3. limr→0 r∆wk > 0, and r
(
η+κ

η

)k
converges to a positive constant as r→ 0.

Proof of Theorem 5.5. We show limr→0 (κ/η)n−k (1 + κ/η)k = 0, which, based on Lemma
4.5, is a sufficient condition for µM → 1, µC→ 0, and g→ κ · lnλ.

We first find a lower bound for ∆wk by applying simplification 2 of Proposition A.1 (substi-
tuting us ≡w0, us+t =wk, t= k, ∆us = ∆w0, a= η+κ

η
, b= r

η
, δ = rw0−(π∞−2cη)

η
):

lim
r→0

r∆wk ≥ lim
r→0

(
∆w0 +

rw0 − (π∞ − 2cη)

κ

)
r

(
η+ κ

η

)k
. (A.20)

Simplification 1 of Proposition A.1 provides asymptotic bounds for ∆wn (substituting us =
wk, us+t = wn, t = n − k, ∆us = ∆wk, a = κ

η
, b = r

η
; the upper bound is obtained using

δ = rwk−(πk−cη)

η
and the lower bound is obtained using δ = rwk−(π∞−cη)

η
):

lim
r→0

[
∆wk

(
(κ/η)n−k +

rη

(η− κ)2

)
+
rwk + cη− πk

η− κ

]
≥ lim
r→0

∆wn

lim
r→0

∆wn ≥ lim
r→0

[
∆wk

(
(κ/η)n−k +

rη

(η− κ)2

)
+
rwk + cη− π∞

η− κ

]
.

Since limr→0 πk = π∞, the lower and upper bounds coincide asymptotically. Furthermore,
Lemma A.1 shows ∆wn ∼ c; hence,

c∼∆wk

(
(κ/η)n−k +

rη

(η− κ)2

)
+
rwk + cη− π∞

η− κ
. (A.21)

Next, we apply simplification 1(b) of Proposition A.1 to obtain (substituting us ≡wk, us+t =
wn, t= n− k, ∆us = ∆wk, a= κ

η
, b= r

η
; the simplification applies because limr→0 r∆wk >

0, as stated in Lemma A.3): r (wn −wk)∼ r∆wk
(η−κ)/η

. Part 1 of Lemma A.1 further implies

π∞ − cκ− rwk ∼
r∆wk

(η− κ)/η
. (A.22)

Substituting the asymptotic equivalence (A.22) into (A.21), we obtain

c∼ c+ ∆wk

(
(κ/η)n−k +

rη

(η− κ)2

)
− rη∆wk

(η− κ)2

=⇒ 0∼∆wk (κ/η)n−k .

Further substitute into inequality (A.20),

0≥ lim
r→0

(
∆w0 +

rw0 − (π∞ − 2cη)

κ

)(
η+ κ

η

)k
(κ/η)n−k
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Given ∆w0 ≥ 0, rw0 ≥ 0, and 2cη−π∞ > 0, the inequality holds if and only if limr→0

(
η+κ

η

)k
(κ/η)n−k =

0, as desired. All other claims in Theorem 5.5 follows directly. QED.
Finally, the next result characterizes the relative rate of divergence between (n− k) and k,

as well as the rate of convergence of µM .

Lemma A.4. 1) limr→0
n−k
k

= 2 ln(1+κ/η)

lnη/κ
; 2) limr→0

1−µM
r

goes to a positive constant.

Proof of Lemma A.4. We first prove n+k
k
∼ 2 ln(1+α)

− lnα
. Note Lemmas A.1 and A.2 jointly

imply rwn+1−(π∞−cη)

η−κ ∼ c ∼ ∆wn. We apply Proposition A.1 simplification 2(b) to find
limr→0 rwk. We substitute us =wn+1, us+t =wk, ∆us =wn−wn+1 =−∆wn, a= η

κ
, b= r

κ
;

the upper bound is obtained using δ =
rwn+1−(πk−cη)

κ
and the lower bound is obtained using

δ =
rwn+1−(π∞−cη)

κ
, and that the lower and upper bounds coincide as r→ 0. Simplification

2(b) applies because ∆us + δ
a−1
∼−c+

rwn+1−(π∞−cη)

κ(η/κ−1)
∼ 0. Proposition A.1 implies

wk −wn+1 ∼−
r

κ (η/κ− 1)4

c (η− κ)

κ
(η/κ)n+1−k

=⇒ r (wn+1 −wk)∼
c (η− κ)

κ2 (η/κ− 1)4 r
2 (η/κ)n+1−k

substitute into (A.22) =⇒ r∆wk ∼ ϕ1 · r2 (η/κ)n−k for some constant ϕ1 > 0.

We denote a = Φ (f (r)) if a/f (r) converges to a positive constant as r → 0. By Lemma
A.3, limr→0 r∆wk > 0, hence (κ/η)n−k = Φ (r2). Lemma A.3 also states that (1 + κ/η)−k =

Φ (r); hence (η/κ)n−k ∼ ϕ2 (1 + κ/η)2k for some constant ϕ2 > 0, implying

(n− k) ln (η/κ)∼ lnϕ2 + 2k ln

(
η+ κ

η

)

=⇒ n− k
2k

∼ 2 ln (1 + κ/η)

lnη/κ
, as desired.

We now prove 1− µM = Φ (r). By Lemma 4.5 and denoting α≡ κ/η,

1− µM =
αn−k

(
(1 + α)k − 1

)
+ αn−k+1 (1 + α)k /2

1− αn−k+1

1− α
+ αn−k

(
(1 + α)k − 1

)
+ αn−k+1 (1 + α)k /2

.

Hence (1− µM) ∼ (κ/η)n−k (1 + κ/η)k. But we have established above that (κ/η)n−k =

Φ (r2) and (1 + κ/η)−k = Φ (r); jointly, these relationships imply 1−µM = Φ (r), as desired.

APPENDIX B: EXTENSIONS

B.1. General Equilibrium Extension

In this Appendix we embed the partial equilibrium model in Sections 4 and 5 into a general
equilibrium framework. We focus on a steady-state equilibrium, i.e., a balanced growth path,
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with aggregate productivity and consumption both growing at a constant rate g. We start with a
discrete time economy and take the limit as the time between periods shrinks to zero to match
the continuous-time setting as in the paper. There is unit measure of households, each with
intertemporal preferences:

max
{y1(t;ν),y2(t;ν),`(t)}

E
∞∑
t=0

e−ρt (ln ct − `t) (A.23)

s.t. ct = exp

(∫ 1

0

ln
[
y1 (t;ν)

σ−1
σ + y2 (t;ν)

σ−1
σ

] σ
σ−1

dν

)
,

∫ 1

0

p1 (t;ν)y1 (t;ν) + p2 (t;ν)y2 (t;ν)dν +
bt+1

1 + r̂t
= [ζtwt`t + dt + Tt] + bt

where e−ρ is the discount rate, dt is dividends income, bt is the holding of a risk-free bond. We
assume households hold the same market portfolio of all firms and therefore receive identical
dividend payments that is equal to the total flow payoff that firms receive in a period. We
normalize the wage rate wt ≡ 1 for all t, and specify that production and the investment cost
are both paid in labor.

To generate variations in the interest rate, we follow Benigno and Fornaro (2018) and in-
troduce uninsurable, idiosyncratic unemployment risk, captured by ζt, which is an indicator
variable that takes value 1 if the household is employed, and zero if the household is unem-
ployed. Each household faces in every period a constant probability q of being unemployed,
and the employment status is revealed at the start of the period. Tt is a lump-sum transfer for
the unemployed households and a tax for employed households. Tt is set such that the income
of an unemployed household is equal to a fraction δ < 1 of the income of an employed house-
hold.1 We further assume unemployed households cannot borrow (bt+1 ≥ 0) and that trade in
firms’ shares is not possible, so that every household receives the same dividends.

The labor market clearing condition is

q` (t) =
∫ 1

0

[
y1 (t;ν)λ−z1(t;ν) + y2 (t;ν)λ−z2(t;ν)

]
dν

+ (
∑∞

s=1 µs (t) (c (ηs) + c (η−s)) + 2µ0 (t) c (η0)) .

The consumption aggregator c (t) in (A.23) features CES across varieties within each market
and Cobb-Douglas across markets. Given our normalization wt = 1, the employed households’
intratemporal problem implies total expenditure on all consumption goods is constant along the
balanced growth path, thereby inducing instantaneous demand functions that coincide with the
preferences in (4) of Section 4 subject to a normalization in the level of expenditure. As in Be-
nigno and Fornaro (2018), the Euler equation of the employed implies an aggregate relationship
between consumption growth and the interest rate:

ct+1

ct
= e−ρt (1 + r̂t) (1− q+ q/δ)

The term (1− q+ q/δ) captures the precautionary saving incentive for employed households
due to idiosyncratic unemployment risk. Taking logs and then take the limit as the time between

1That is, an unemployed receives a transfer Tt = b(wt`t+dt)−dt
1+bq/(1−q) while an employed pays a tax Tt =

− q

1−q
b(wt`t+dt)−dt
1+bq/(1−q) .



16

periods shrinks to zero, we obtain the continuous-time analogue:

g (t)≡ d ln c (t)

dt
= r̂ (t)− ξ (A.24)

where ξ ≡ ρ+q−q/δ < ρ. The interest rate and the growth rate along the balanced growth path
is jointly pinned down by the demand-side relationship (A.24) and a production-side relation-
ship derived in the partial equilibrium model of Sections 4 and 5. A reduction in the interest rate
driven by demand-side forces, such as increasing patience or heightened levels of uninsurable
risk, can be modeled as a decline in ξ, as depicted in Figure B.1.

FIGURE B.1.— Growth and the interest rate in general equilibrium
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On a balanced growth path, the consumption price index P (t) takes the same form as defined
in Section 4.1, and it declines at a constant rate g relative to the numeraire; hence, the value
function of a firm currently in state s is

vs (t) = E
[∫ ∞

0

e−r̂τ
{
π (t+ τ)− c (t+ τ)

P (t+ τ)/P (t)

}
dτ
∣∣s]

= E
[∫ ∞

0

e−(r̂−g)τ {π (t+ τ)− c (t+ τ)}dτ
∣∣s] .

The general equilibrium version of the main result of Theorem 5.5 states that, as ξ declines
towards zero, r̂ − g→ 0, and aggregate productivity growth rate g must decline and converge
to κ · lnλ.2

B.2. Asset-Pricing Implications

Our key mechanism implies that, starting from a steady-state with a low interest rate, a fur-
ther decline in r raises the expected future cash flows of current market leaders by causing
their leadership to become more persistent. Hence, a decline in r raises the firm value of mar-
ket leaders relative to followers, and the asymmetric valuation response is larger at lower levels

2The reason we introduce unemployment risk á la Benigno and Fornaro (2018) is as follows. Absent unemployment
risk (q = 0), the Euler equation takes the standard form given log-utility over ct: g = r̂−ρ. In that case, a decline in ρ
can still generate a decline in the interest rate, but there is a lower bound on ρ below which the consumer optimization
problem is no longer well-defined (i.e., when consumption growth is higher than the rate of discounting), and r̂− g
cannot fall to zero. Unemployment risk creates a channel for the interest rate to fall close to zero.
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of the interest rate. In this appendix, we formalize this intuition into a prediction testable us-
ing asset prices. Let us start with a steady-state economy with interest rate r and consider an
unexpected and permanent decline in the interest rate −dr. Lower discounting of future cash
flows raises market values of all firms; moreover, investment decisions respond endogenously,
further affecting firm valuations. We focus on the immediate, on-impact effect of the shock
on the relative firm value between leaders and followers. Let vs and v̂s respectively denote the
pre- and post-shock value function in state s. Define V̂ L

V L
≡
∑∞
s=0 µsv̂s∑∞
s=0 µsvs

. The numerator evaluates
leaders’ market value in the new equilibrium using the productivity gap distribution from the
pre-shock steady-state; therefore, d lnV L ≡ V̂ L

V L
− 1 captures the on-impact effect of the inter-

est rate shock −dr on the total value of market leaders, before the economy starts transitioning
to the new, post-shock steady-state. We define V̂ F

V F
and d lnV F analogously for followers.

PROPOSITION 1: Consider a steady-state with interest rate r. To first-order around r = 0,
a permanent change in the interest rate has the following on-impact, proportional effect on the
valuation of leaders and followers:

− d lnV L

dr
=

1

r
and − d lnV F

dr
=

1

−r ln r
.

The proposition states that, starting from a steady-state with low r, a small decline in the
interest rate −dr immediately raises leaders’ market value by a proportion of 1/r and raises
followers’ value by a proportion of 1/(r ln r). The relative valuation response between lead-

ers and followers, − d ln(V L/V F )
dr

= 1
r

(
1 + 1

ln r

)
, increases and diverges to infinity as r→ 0.

This is an empirically-testable prediction. Starting from a low-r steady-state and following an
unexpected further decline in the interest rate, market leaders at the time of the shock should
experience immediate valuation gains relative to market followers. The asymmetric valuation
effect should be more pronounced when the pre-shock interest rate is lower.

Importantly, low r affects relative firm valuations not only through changing the discount
rate but also through changes in future cash flows that favor the current leaders. Holding cash-
flows constant, followers in the model expect more distant payoff streams, and their firm value
should therefore be more sensitivity to changes in the interest rate. However, because invest-
ments respond endogenously to interest rates, cash flows are expected to change. Leaders tend
to raise investments more than followers do. The endogenous investment response increases
leader’s duration and the persistence of market power. Changes in future cash flows are key in
explaining why leaders may have longer duration than followers. These predictions would not
emerge naturally from other models, and they form a powerful test of our model’s dynamics.

The proposition shows that, if the interest rate declines from an already low level, the en-
dogenous investment response dominates the mechanical duration effect, and therefore leader
value unambiguously increases more than follower value. To understand why the asymmetry
is stronger when r is lower, note that the valuation responses of leaders and followers depend
on the state variable in the respective industries. When the leader-follower gap is small—the
state is competitive and close to neck-and-neck—a lower interest rate may actually reduces
the leader’s value relative to the follower’s, as maintaining leadership becomes more difficult
due to followers’ investment response. On the other hand, when the leader-follower gap is suf-
ficiently large, the follower invests little as it is discouraged, and a lower interest rate boosts
the relative value of leaders even further because the far-ahead leaders now expects even more
persistent profits due to the asymmetric investment response. Proposition 2 aggregates these
state-by-state valuation effects to the entire economy. If the initial interest rate is high, the
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steady-state features a significant mass of markets in which the follower stays competitive, and
the average leader in the economy experiences a valuation loss relative to the average follower
if the interest rate declines. Conversely, starting from a low-r steady-state, the distribution of
the state variable concentrates in regions in which the follower is no longer competitive, and,
therefore, the average leader experiences valuation gains relative to the average follower in the
economy when the interest rate declines. The lower is the initial interest rate, the stronger is
this asymmetry. To prove the Proposition, we first establish a Lemma.

Lemma A.5. ∆v−k ∼ c, v−k ∼ c
1−κ/η , v−(n+1) ∼ 0. Proof. Note that v−(k−1) − v−k ≥ c,

v−(k−2)−v−(k−1) ≥ c, and c≥ v−k−v−(k+1). Substitute these inequalities into the HJB equa-
tions for followers in state k− 1 and k, we get

(v−(k−1) − v−k)≤
π−(k−1) − π−k

2η+ κ+ r
+

2η+ κ

2η+ κ+ r
c,

which implies limr→0 (v−(k−1) − v−k)≤ c. Coupled with the fact that v−(k−1)− v−k ≥ c, this
establishes that v−(k−1) − v−k ∼ c. That v−k − v−(n+1) ∼ c

1−κ/η can be obtained by applying
simplification 1a) of Proposition A1. It remains to show v−(n+1) ∼ 0. Note that we can write
v−(n+1) as a weighted average of the flow payoffs in states k + 1 through n+ 1 and the value
function in state −k:

v−(n+1) =
∑n+1

s=k+1εsπ−s + εkv−k, where
∑n

s=kεk = 1.

The flow payoffs π−k approach zero as r→ 0; hence, v−(n+1) ∼ εkv−k. The term εk can be
found by solving the recursive relationship

v−(n+1) =
κ

r+ κ
v−n

v−n =
κ

r+ κ+ η
v−(n−1) +

η

r+ κ+ η
v−(n+1)

...

v−(k+1) =
κ

r+ κ+ η
v−k +

η

r+ κ+ η
v−(k+2).

It is easy to see that εk < (κ/η)n−k; hence, as r→ 0,
v−(n+1)

v−k
→ 0. This implies that v−(n+1) ∼

0 and v−k ∼ c
1−κ/η , as desired. QED.

Proof of Proposition 2. Let (k,n) be the equilibrium investment decisions under interest
rate r and (k2, n2) be the investments under r− dr. Recall α≡ κ/η. We now show d lnV F =
k2−k
k

+O (r) . The total market value of followers is∑k

s=1µsv−s +
∑n+1

s=k+1µsv−s = 2µ0

(∑k

s=1a
sv−s

)
+ µk+1

(∑n−k
s=0 b

sv−(k+1+s)

)
where a ≡ η

η+κ
and b ≡ η/κ. We analyze the two terms on the RHS separately. First, we

show the total value of followers in the competitive region scales with k asymptotically, i.e.,∑k

s=1 µsv−s ∼Ck for some constant C . For any m< k, we can write
∑k

s=1 µsv−s as∑k

s=1µsv−s = 2µ0

(∑m−1

s=1 a
sv−s +

∑k

s=ma
sv−s

)
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Lemma A.5 shows ∆v−k ∼ c and v−k ∼ c
1−κ/η . For any s′ ≥ m, we apply Proposi-

tion A.1 to generate asymptotic upper- and lower-bounds for v−s′ and ∆v−s′ . Specifi-
cally, let v−s′ ≡ c

1−a

(
1− ak−s′

)
+ ca

1−a

(
(k− s′)− a−ak−s

′

1−a

)
, v−s′ ≡ c

1−a

(
1− ak−s′

)
+

ca− πm
η+κ

1−a

(
(k− s′)− a−ak−s

′

1−a

)
, ∆v−s′ ≡ cak−s

′
+ ca

(
1−ak−s

′−1
)

1−a , and ∆v−s′ ≡ cak−s
′

+(
ca− πm

η+κ

) (
1−ak−s

′−1
)

1−a . Then

limr→0 (v−s′ − v−s′) limr→0

(
v−s′ − v−s′

)
,

limr→0

(
∆v−s′ −∆v−s′

)
≥ 0≥ limr→0

(
∆v−s′ −∆v−s′

)
.

Analogously for all s <m, we apply Proposition A.1 to find bounds for v−s using v−m, v−m,

∆v−m, and ∆v−m. Specifically, let v−s ≡ v−m+∆v−m
1−am−s

1−a +
ca− πm

η+κ

1−a

(
m− s− a−am−s

1−a

)
and v−s ≡ v−m + ∆v−m

1−am−s
1−a +

ca− πs
η+κ

1−a

(
m− s− a−am−s

1−a

)
, then limr→0 (v−s − v−s) ≥

0 ≥ limr→0

(
v−s − v−s

)
. Using these bounds for v−s, we can now find upper and lower-

bounds for
∑k

s=1 µsv−s:

0≤ limr→0 2µ0

(∑m−1

s=1 asv−s +
∑k

s′=m a
sv−s′

)
−
∑k

s=1 µsv−s

0≥ limr→0 2µ0

(∑m−1

s=1 asv−s +
∑k

s′=m a
sv−s′

)
−
∑k

s=1 µsv−s

These bounds simplifies to

0≤ limr→0

(
2µ0c

(
a

1−a

)2

k−
∑k

s=1µsv−s

)
0≥ limr→0

(
2µ0 (c− πm/η)

(
a

1−a

)2

k−
∑k

s=1µsv−s

)
.

Since m is arbitrarily chosen, πm can be made arbitrarily close to zero; hence we conclude∑k

s=1 µsv−s ∼ 2µ0c
(

a
1−a

)2

k. We now compute the market value of followers in the monop-
olistic region. Using Proposition A1, we derive

v−(k+s) ∼ v−k −
c

1− κ/η
(1− (κ/η)s)∼ c

1− κ/η
(κ/η)s ,

=⇒
∑n+1

s=k+1µsv−s = µk+1

∑n−k
s=0 (η/k)s v−(k+1+s) ∼ µk+1

αc

1− α
(n− k)

The total market value of followers is thus

V F ≡
∑k

s=1µsv−s +
∑n+1

s=k+1µsv−s ∼ 2µ0c

(
a

1− a

)2

k.

Now consider the new equilibrium characterized (k2, n2) under interest rate r − dr. Let
value functions be denoted by v̂s under the new equilibrium. The market value of followers,
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evaluated using the steady-state under r, is V̂ F ≡
∑k

s=1 µsv̂−s +
∑n+1

s=k+1 µsv̂−s. Following

the same derivation as before, we can show V̂ F ∼ 2µ0c
(

a
1−a

)2

k2, thus d lnV F ≡ V̂ F

V F
−

1 = k2−k
k

+O (r). That d lnV F = log(r−dr)

log r
+O (r) ⇐⇒ − d lnV F

dr
= 1

r ln r
follows from the

convergence of r
(
η+κ

η

)k
to a positive constant (Lemma A.3).

The on-impact, proportional change in the total market value of leaders can be derived anal-
ogously, as Proposition A.1 enables us to derive an asymptotic analytic approximation for the
value functions. We omit the derivations here and instead provide a simpler intuition for the
result. As interest rate converges to zero, the total market value of leaders becomes inversely
proportional to the interest rate (rV L converges to a positive constant). Hence, following a
small decline in interest rate, the value of leaders changes proportionally with the interest rate,
i.e. − d lnV L

dr
= 1

r
.
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