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Abstract

We develop a theory of sectoral fluctuations driven by the propagation of demand shocks
along supply chains with heterogeneous time-to-build production. We solve the model in
closed form. Downstream producers respond directly to current demand. Upstream pro-
ducers, due to time-to-build delays, respond to anticipated future demand. Consequently,
hump-shaped demand shocks to downstream goods propagate and amplify along the supply
chain, generating pronounced volatility in upstream sectors and creating the bullwhip effect.
Empirically and quantitatively, we show that the bullwhip is significant across downstream
sectors that are important for final consumption.
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1 Introduction

When a wrangler flicks a bullwhip, the motion propagates along its length, growing stronger
and faster until the tip, or cracker, moves so fast that it breaks the sound barrier. Fluctuations
in supply chains exhibit a similar phenomenon, with demand shocks originating downstream
amplifying significantly as they propagate upstream.

We develop a theory of sectoral fluctuations driven by the propagation of demand shocks
in a production network with heterogeneous time-to-build production delays, and we solve the
model in closed form. Downstream producers respond immediately to current demand changes,
whereas upstream producers, due to time-to-build, react based on expectations of future demand.
As a result, downstream demand shocks with a hump-shaped time profile get amplified responses
along the sectoral supply chain and result in large fluctuations in upstream sectors creating the
bullwhip effect. We show empirically and quantitatively that the amplification of demand shocks
through time-to-build along supply chains—the bullwhip—is a central feature of the economy’s
response to demand shocks. Metaphorically, demand shocks originating in downstream sectors
are like the wrangler’s initial flick: small initial movements get amplified dramatically as they
travel upstream, culminating in pronounced volatility among upstream sectors.

Our model builds on two canonical models: the time-to-build environment of Kydland and
Prescott (1982) as a theory of aggregate fluctuations, and the neoclassical sectoral model of Long Jr
and Plosser (1983), in which all inputs require exactly one period to build, in the presence of either
aggregate or sectoral productivity shocks. Methodologically, we develop and solve in closed form
a production network model with sectoral demand shocks that explicitly incorporates heteroge-
neous time-to-build frictions. Substantively, our central focus is on how sectoral demand shocks
propagate through and are amplified within supply chains, thereby generating the bullwhip ef-
fect. This provides a novel theory of sectoral fluctuations driven by demand shocks interacting
with heterogeneous time-to-build dynamics.

Our theory of sectoral fluctuations features two core elements. The first is sectoral demand
shocks, arising from consumers’ time-varying and stochastic preferences for different final goods.
The second is heterogeneous time-to-build delays throughout the supply chain. We analyze the
interplay between demand shocks, heterogeneous delays, and the cross-sectoral linkages in the
economy. We fully characterize this model in a complete information setting, when the nature of
shocks are known, and subsequently extend the characterization to an incomplete information
setting, in which agents cannot distinguish shocks with different time profiles.

The primary difficulty in characterizing the effects of sector-specific demand shocks within
a time-to-build environment is as follows. Producers must choose inputs in anticipation of fu-
ture demands across all time horizons. The expectation of future demands themselves arise from

1



both the exogenous impulse response of consumer demand shocks—at all time horizons—and
endogenous direct and indirect responses to the consumer shocks by other producers—again, at
all time horizons. The challenge is that each producer must account simultaneously for multiple
future horizons and for the endogenous actions of producers situated at various positions in the
supply chain, each potentially facing distinct time-to-build delays. The complexity of the pro-
ducers’ endogenous response emerges from the interaction between the network structure and
the heterogeneity in time-to-build delays across inputs, as well as the temporal structure of sec-
toral demand shocks. Theoretically, our problem is a path-dependent stochastic optimal control
problem where the value functions depend on the input decisions at all previous heterogeneous
time-to-build delays, which cannot be summarized by a low-dimensional state variable.

Our first contribution is an analytical characterization of the solution to this model for general
sectoral demand shock processes, expressed explicitly in terms of the model’s primitives: the
demand shocks, the production network structure, and the heterogeneity in time-to-build delays.
The central object of the analytical characterization is the impulse response of sectoral revenue
to sectoral demand shocks affecting various parts of the supply chain. Specifically, Theorem 1
provides a closed form solution expression for each sector’s revenue at a given time as an explicit
function of expected consumer demands across all future time horizons and across all different
goods that directly or indirectly rely on that sector as an input supplier.

Formally, sectoral revenue at a given time is a summation across future time horizons, with
each term comprising two components explicitly derived from economic primitives. The first
component is the conditional expectations of future consumer demands across goods, reflecting
the temporal evolution of the demand shock process. The second component consists of horizon-
specific weights applied to these conditional expectations. These weights reflect the direct and
indirect input-output dependence across all possible network paths, along which the time-to-
build delays cumulate to the specific time horizon of the expected future demand. These weights
adjust the conditional expectations according to the time-to-build structure, resulting in different
impacts of demand across sectors at various time horizons. Unlike the Leontief inverse—which
aggregates direct and indirect linkages equally across all time horizons—the weights in our frame-
work explicitly distinguish interactions at different time horizons, precisely due to heterogene-
ity in time-to-build delays between suppliers and input-users. The sequence of horizon-specific
weights, and hence the impulse-response of sectoral revenue, is derived in closed form in terms
of the economy’s primitives: the demand shocks, the sectoral linkages, and the time-to-build
structure.

We then specialize the demand shock process into two distinct stochastic components. The
first component captures transient changes in consumer preferences, modeled as monotone-
decay AR(1) shocks, where a demand innovation today is expected to diminish monotonically
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over time. The second component captures slower-developing changes, such as those arising
from habit formation, consumer fads, or delayed adoption processes. These are modeled as hump-
shaped AR(2) shocks, where a current increase in demand initially leads to increased demand at
future horizons before eventually declining.

Theorem 2 explicitly characterizes the impacts of hump-shaped and monotone-decay demand
shock components. For the monotone-decay component, we apply a similar approach as in the
proof for Theorem 1, decomposing the impact into direct and indirect network effects at different
time horizons, where each round of the network effect is discounted by both the discount rate
and the rate at which the shock dissipates. The challenge in Theorem 2 lies in deriving the
effect of the hump-shaped component because the impact of a hump-shaped shock does not
decay monotonically. We show that the impulse response to a hump-shaped shock follows a
non-monotone time path, represented explicitly as the product of an arithmetically increasing
term and an exponentially decaying term.

To illustrate the intuition, consider an increase in consumer demand for automobiles. How
producers respond to this shock depends crucially on their positions along the automobile supply
chain. Downstream producers—those that are close in distance to the shock, such as automakers
and manufacturers of tires or glass windows—respond by ramping up production to meet current
or near-future expected demand. In contrast, producers located further upstream—such as man-
ufacturers of semi-conductors or steel alloy, which are indirectly used in auto manufacturing as
intermediate components—face significant time-to-build delays. As a result, these upstream pro-
ducers adjust their production levels primarily based on anticipated future demand rather than
current demand.

When a demand shock is hump-shaped—meaning higher automobile demand today signals
even stronger demand in the future—upstream producers have significantly amplified responses,
creating the bullwhip effect. This happens because distant suppliers respond more strongly to
anticipated future peaks in demand, compared to downstream producers that mainly respond
to current or short-term demand. Conversely, when demand shocks monotonically decline over
time, downstream producers are always more responsive than upstream producers, preventing
any amplified response along the supply chain.

The position of a producer in the supply chain, and the distance between them, play an im-
portant role in our analysis. A key feature of our model is the notion of delay—how long it takes
for a given sector’s value-added to reach a specific user of its input along the supply chain. With
time-to-build, the distance from an input supplier to a producer translates to the relative delays
of producing goods between producers. We show that the ratio between a producer’s revenue
response to a hump-shaped demand shock downstream and the response to a monotone-decay
shock is a formal notion of supply chain distance in our model. This ratio captures the weighted
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average of delays over all possible direct and indirect routes between the input supplier and in-
put user, where the weights are given by the share of the supplier’s output sent along each route.
The remaining theoretical challenge is to characterize the weights, which are themselves endoge-
nous. Our closed form solution of the impulse responses of producers actions to the hump-shaped
shocks allows us to determine these endogenous weights and thus determine the supply chain
distance measure in closed form over the primitives of the economy. Our definition of supply
chain distance from one sector to another extends the influential upstream measures by Antràs
et al. (2012) and Alfaro et al. (2019).

We further extend our analysis to an incomplete information environment, where both het-
erogeneous delays and learning are present. Specifically, we consider an environment in which
agents observe only the realized consumer demand but cannot distinguish whether shocks exhibit
a monotone-decay or a hump-shaped time profile. Theorem 3 extends our analytical characteri-
zation of the impulse responses from Theorem 2 to include this additional filtering problem faced
by the suppliers. We find that supply chains connected to downstream sectors experiencing pre-
dominantly hump-shaped shocks exhibit pronounced amplification of demand fluctuations.

Empirically, we use our bilateral supply chain distance measure and document the significance
of the bullwhip effect across US sectors. First, we show in the cross section that the bullwhip
is significant across all downstream sectors that are important for final consumption. As an
example, we plot the bullwhip effect for automobiles in Figure 1. Each circle is a sector along
the supply chain of automobiles, with size in proportion to the intensity of input usage. The
Y-axis is our measure of supply chain distance from each supplier to automobiles; higher on the
Y-axis are sectors more upstream in the supply chain. The X-axis is the standard deviation in the
year-on-year value-added growth, a measure of sectoral volatility. The bullwhip effect manifests
in this figure, as more upstream sectors in the automobile supply chain have higher volatility. In
Section 4.2, we establish that this pattern holds across supply chains for all final goods.

Crucially, our theory’s predictions extend beyond the cross-sectional observation that up-
stream sectors often exhibit higher volatility, an empirical regularity that could be driven by
other factors such as supplying multiple downstream industries and thereby aggregating multi-
ple shocks. Instead, our theory provides precise predictions regarding impulse-response dynam-
ics: specifically, even along a single input-output linkage, hump-shaped shocks originating in a
downstream sector can generate amplified volatility in upstream sectors.

We empirically validate the predictions by examining impulse-response functions for up-
stream value-added following downstream shocks. In order to do this, we first isolate downstream
innovations in sectoral value-added—which respond to demand shocks—and classify downstream
sectors according to the relative importance of AR(2) versus AR(1) shocks using partial autocor-
relation function (PACF). We then show how sectoral responses propagate through supply chains
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Figure 1. Upstreamness and volatility for the supply chain of automobiles
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using the estimated innovations.
The observed heterogeneity in impulse-response functions provides a sharp test of our theory,

aligning with all four key theoretical predictions under incomplete information. First, down-
stream sectors dominated by AR(2) shocks exhibit a distinctly hump-shaped response in their
own value-added following demand shocks. Second, the value-added response along the sup-
ply chain is also hump-shaped and initially amplified as shocks propagate upstream, generating
pronounced volatility. Third, this amplification diminishes in sectors located further upstream.
Fourth and most importantly, the downstream hump-shaped responses and upstream amplifica-
tion effects are markedly stronger in sectors where AR(2) shocks dominate, while such patterns
are weak or absent in sectors characterized primarily by AR(1) shocks.

In the final part of the paper we conduct a model-based exercise. We infer the empirical pro-
cess of demand shocks using the model. We perform variance decompositions for supply chain
associated with each downstream good. We find that on average, hump-shaped AR(2) shocks
account for 47.6 percent of supply chain volatility in the US economy. The fraction ranges from
9.2 percent on the lower end (for the supply chain associated with “Coffee and Tea”) to 92.2
percent on the higher end (for the supply chain associated with “Navigational, Measuring, Elec-
tromedical, and Control Instruments”). In a counterfactual world where all demand shocks are
hump-shaped—while holding overall demand volatility constant—supply chain volatility signifi-
cantly increases, by up to 145.7 percent for sectors supplying transportation goods. Conversely,
when all demand shocks decay monotonically, supply chain volatility declines substantially, by
more than 69 percent across all sectors. Furthermore, employing the standard static production
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network model, which neglects time-to-build dynamics, significantly understates supply chain
volatility attributable to downstream demand shocks, by over 50 percent in certain consumption-
good sectors.

Our paper relates to the growing literature on production networks (Carvalho, 2010; Gabaix,
2011; Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi, 2012; Jones, 2011, 2013; Oberfield, 2018;
Liu, 2019; Baqaee and Farhi, 2019, 2020; Bigio and La’O, 2020; Elliott et al., 2022; Taschereau-
Dumouchel, 2020; Vom Lehn and Winberry, 2022; Pellet and Tahbaz-Salehi, 2023; Kopytov et al.,
2024; Liu and Ma, 2024; Liu and Tsyvinski, 2024; Nikolakoudis, 2024). In contrast to the exist-
ing literature, which includes static models (e.g., Acemoglu et al., 2012), steady-states of dynamic
models with one-period time-to-build delays (e.g., Long and Plosser, 1983), and transition dy-
namics with time-invariant consumer demand (e.g., Liu and Tsyvinski, 2024), we provide a full
characterization of shock propagation in a dynamic production network with time-varying con-
sumer demand and arbitrary and heterogeneous time-to-build.

While our equilibrium characterization through network matrices explicitly summing over
heterogeneous delay paths is also new to the mathematical literature on network theory, it shares
similarity to existing network measures such as the communicability indices developed by Estrada
and Hatano (2008) and Estrada and Higham (2010). Communicability measures quantify con-
nectedness between nodes by summing over all possible paths weighted exponentially by length.
However, communicability measures typically assume homogeneous timing and symmetric weight-
ing across edges and do not explicitly distinguish different temporal shock profiles. By contrast,
our characterization explicitly incorporates economically motivated heterogeneous delays, ratio-
nal expectations, and demand shock profiles. Thus, while conceptually connected, our specific
formulation is new relative to existing network literature.

Our focus of time-to-build’s implications on industry dynamics is broadly related to an in-
fluential literature that studies heterogeneity of fixed costs that firms face in their investment
decisions (Khan and Thomas, 2008, 2013). Similar to that literature, the presence of time-to-build
in a production network as the presence of the fixed costs leads to sophisticated industry dynam-
ics and rich responses of the economy to shocks. Time-to-build delays represent periods during
which inputs have been produced but not yet sold to consumers, or completed but not imme-
diately contributing value to production. Empirically, these goods are captured as inventories
(Ferrari, 2023; Antràs and Tubdenov, 2025). Unlike models with inventory management mar-
gins to hedge against shocks (Khan and Thomas, 2007), inventories in our model have specific
shelf-lives. Our central theoretical results depend only on the first moments (expected values) of
future demand and are thus invariant to higher-order moments, such as variance. Consequently,
our theoretical characterizations remain valid even when analyzing unanticipated shocks in sce-
narios where the variance of shocks approaches zero, effectively eliminating any hedging role of
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inventories.
A recent working paper by Schaal and Taschereau-Dumouchel (2025) offers a complementary

study of how heterogeneous time-to-build affects the propagation and persistence of shocks in
input-output networks. Similar to Liu and Tsyvinski (2024)—but in contrast to our study’s fo-
cus on demand shocks—they analyze the dynamic impact of productivity shocks. Their analysis
uses Fourier methods to provide important insights into the cyclical mechanisms and time-series
properties of sectoral dynamics.

Our model implies a natural notion of supply chain distance from an input supplier to an input
buyer. The measure is a weighted average of the cumulative delays across all possible network
paths from the supplier to the buyer. This measure relates to Antràs et al. (2012)’s influential
upstreamness measure, which is later extended to a bilateral setting by Alfaro et al. (2019). Our
empirical focus also relates to Antràs and Tubdenov (2025), which propose a new measure of time-
to-build delays based on the ratio between firm-level inventories and cost-of-goods-sold. Our
focus on demand shocks is also related to Baqaee and Burstein (2023), who present a framework
for welfare accounting with taste shocks.

There is a substantial body of literature on the bullwhip effect in the fields of industrial en-
gineering and operations management (Forrester, 1958; Lee et al., 1997, 2004). This literature
primarily concentrates on the supply decisions of of individual firms, with a body of empiri-
cal work consisting of case studies based on firms’ different positions within a supply chain.
A key theme of this literature is on individual firms’ decisions and on how frictions that these
firms face—behavioral or managerial biases, coordination failures, forecast errors, or different
processes for formation expectations—result in amplification of volatility in orders placed. By
contrast, we develop and solve a general equilibrium model of sectoral fluctuations, where pro-
ducers in all sectors, interconnected through the input-output relationships, optimally react to
demand shocks subject to technological time-to-build constraints. We thus show that the bull-
whip effect arises as an equilibrium phenomenon in the absence of behavioral, coordination, or
other inefficient frictions.

2 Model

In this section we describe the environment and characterize the equilibrium. The model builds
on Long Jr and Plosser (1983) and is a discrete-time dynamic production network with heteroge-
neous time-to-build, i.e., intermediate inputs are required to be supplied in advance. The main
departures from Long Jr and Plosser (1983) are the introduction and analysis of sectoral demand
shocks and of the heterogeneous time-to-build across inputs.
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2.1 Economic Environment

Preferences There is a representative consumer with preferences

V (St) = E

[ ∞∑

s=t

βs−t

(
N∑

i=1

θis ln cis − v
(
ℓ̄s
)
)
|St

]
(1)

where St is the set of state variables at the beginning of time t, cit is consumption of good i,
{θit}≥0 are the demand shocks, and ℓ̄t is total labor supplied.

Technology There are N sectors, each with constant-returns-to-scale production that uses
labor and intermediate goods from other sectors. There is heterogeneous time-to-build across
inputs: each input j must be supplied dij periods before production takes place in sector i, where
0 < dij < ∞. The time-to-build is supplier-user specific; the mathematical formulation can
be equivalently interpreted either as the shipping delay associated with delivering input j to
producer i, or the duration required for input j to complete the production process for good i.

The production function of sector i is

yit = zitℓ
αi
it

N∏

j=1

m
ωij

ij,t−dij
, αi +

∑

j

ωij = 1, (2)

where zit is sectoral productivity, ℓit is the labor input, and mij,t−dij is the intermediate good j
used in production of good i. The elasticities of intermediate inputs {ωij} define the production
network Ω ≡ [ωij]

′, where each column of Ω is an input user and each row is an input supplier.1

Market Clearing The goods and labor market clearing conditions are

yjt = cjt +
N∑

i=1

mijt, ℓ̄t =
∑

i

ℓit. (3)

Sectoral Demand and Productivity Shocks We assume the economy is affected by sectoral
demand shocks, as θit may fluctuate from period to period. For expositional simplicity, we as-
sume that consumer demand is mean-reverting in the long run, i.e., lims→∞ Et [θt+s] = θ̄ where
θ̄ represents steady-state levels of consumer demand. The extension to time-varying long-run
demand is conceptually straightforward but complicates exposition.

The economy is also affected by sectoral productivity shocks zit.
Demand shocks are the key objects of this study. As we show below, most of our results are

invariant to the process of productivity shocks.
1We assume that I−Ω is invertible, which is ensured when the production of any good eventually involves labor

along the supply chain (i.e., for any i,
∑

i αi

[
Ωk
]
ji
> 0 some k).
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2.2 Equilibrium

In order to analyze the competitive equilibrium, it is more transparent to study the social planner’s
problem. Because there are no distortions or externalities in the model—time-to-build is a techno-
logical feature of the economic environment and is also part of the social planner’s problem—the
competitive equilibrium is efficient: allocations are identical to the planner’s solution, and equi-
librium prices correspond to the Lagrange multipliers of the planner’s problem up to a choice
of numeraire (and this choice is inconsequential for our analysis). The concordance between
the planner’s Lagrange multipliers and equilibrium prices enables us to interpret the planner’s
solution as equilibrium objects involving prices, such as GDP, value-added, sales, and the Do-
mar weight (i.e., sectoral size measured as the sales-to-GDP ratio). For expositional clarity, we
analyze the planner’s solution in the main text, and we formally demonstrate the mapping to a
decentralized equilibrium in Appendix B.1.

The planner solves

Vt

(
{mij,t−q}q=1,...,dij

)
= max

{ℓit,cit,mijt,ℓ̄t}
∑

i

θit ln cit − v
(
ℓ̄t
)
+ βEt

[
Vt+1

(
{mij,t+1−q}q=1,...,dij

)]

+wt

[
ℓ̄t −

∑

j

ℓjt

]
+
∑

j

pjt

[
zjtℓ

αj

jt

∏

k

m
ωjk

jk,t−djk
− cjt −

∑

i

mijt

]
,

where wt is the Lagrange multiplier for the labor market clearing constraint, and pjt is the La-
grange multiplier for the market clearing constraint of output from sector j.

We now discuss the difficulty of analyzing this problem. The key complication lies in the
fact that this is an optimal control problem with endogenous state variables {mij,t−q}q=1,...,dij

that are matrices of all of the past choices of the suppliers inputs at all horizons of the past time
delays. That is, the optimal control problem is path-dependent through the dependence on the
choices of the previous inputs at all previous delay horizons that cannot be summarized in a
low-dimensional state variable.2 The key difficulty is that the delays at all horizons also affect
all of the future value functions and represent the complicated endogenous responses of input
suppliers to all future stochastic demand shocks at all time horizons. In Theorem 1, we show that
the solution to this problem can be represented in a strikingly simple form.

The first-order conditions with respect to cjt, ℓjt, and ℓ̄t are:

{cjt} θjt = pjtcjt (4)

{ℓjt} wtℓjt = αjpjtyjt (5)
{
ℓ̄t
}

v′
(
ℓ̄t
)
= wt. (6)

2The analysis of these problems, especially in stochastic environments, is in its nascency. See Bayraktar and
Keller (2018) for a recent mathematical treatment of path-dependent Hamilton-Jacobi equations and Boerma et al.
(2024) for the use of stochastic calculus of variations to provide a non-recursive approach.
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The envelope condition and the first-order condition with respect to mjk,t−djk jointly imply

{mjkt} pktmjkt = ωjkβ
djkEt

[
pj,t+djkyj,t+djk

]
(7)

As we show in Appendix B.1, the Lagrange multipliers correspond to prices at the time when input
decisions are made in a decentralized competitive equilibrium when the numeraire is chosen such
that the marginal utility of income in each period is normalized to one. We henceforth refer to
pjt as the price of good j and wt as the wage rate.

Equation (4) shows that total expenditure on consumption of good j equals the concurrent
demand shock θjt. Equation (5) shows that each producer’s labor expenditure is αj fraction of the
revenue, where αj is the value-added intensity in the sector. Equation (7) states that producer j’s
expenditure on input k at time t, pktmjk,t, equals a fractionωjk of the producer’s expected revenue
at future time t + djk, discounted at rate β per period. The expectation in (7) encapsulates the
measurability constraint in the planner’s solution.

Let γjt ≡ pjtyjt denote the sector j’s revenue at time t. This is an important object for our
analysis, as we can express the equilibrium allocation in shares (i.e., the fraction of workers in
each sector ℓit/ℓ̄t; the share of each sector j’s output used for consumption, cjt/yjt; and the share
used as production inputs, mijt/yjt) all as functions of the demand shocks and the current and
expected future revenues:

ℓjt
ℓ̄t

=
αjγjt∑
i αiγit

,
cjt
yjt

=
θjt
γjt
,

mijt

yjt
= ωijβ

dij
Et

[
γi,t+dij

]

γjt
. (8)

The GDP, i.e., the total value-added in the economy, is
∑

i αiγit. The Domar weight, defined as
the sectoral sales-to-GDP ratio, is

(Domar weight) ζit ≡
pityit∑
iwtℓit

=
γit∑
i αiγit

.

We now solve for sectoral sales {γit} as a function of expected future demand. First multiply
the goods market clearing condition (3) by pjt on both sides and then substitute out cjt and mijt

using (4) and (7), we obtain

γjt = θjt +
N∑

i=1

βdijωijEt

[
γi,t+dij

]

= θjt +
∞∑

d=1

N∑

i=1

βdωij1dij=dEt [γi,t+d] .

That is, the revenue of sector j at time t consists of the concurrent time-t consumer demand for
good j and the demand from other producers. Because of the heterogeneous time-to-build input
delays by dij periods, the expenditure on input j at time t by producer i is equal to the input cost
share ωij times the expected revenue at time t+ dij , discounted by βdij .
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We then re-write the sectoral revenue equation in vector form. Throughout the paper, bold-
face letters represent matrices (uppercase) and column vectors (lowercase). Let theN×N matrix
Ωd ≡

[
ωij1dij=d

]′ denote the input cost shares for inputs with delay d, and let θt ≡ [θit] be the
column vector of demand shocks. The collection of matrices {Ωd}∞d=1 defines the time-to-build
structure over the production network. Note that each column of Ωd represents an input user
and each row represents an input supplier.

Using the matrix notation, the vector of revenue can be written as

γt = θt +
∞∑

d=1

βdΩdEt [γt+d] . (9)

The theorem below solves for the sectoral revenue at time t as a function of the expected future
demand across sectors.

Theorem 1. Let Φs denote the set of positive sequences ϕ ≡ (ϕ1, . . . , ϕn) that sum to s (i.e.,∑n
k=1 ϕk = s with ϕk > 0 for all k). Sectoral revenue follows

γt = θt +
∞∑

s=1

GsEt [θt+s] , whereGs ≡ βs
∑

ϕ∈Φs

∏

ϕj∈ϕ
Ωϕj

. (10)

Proof. See appendix A.1.

The infinite series (10) always converge given that demand is mean-reverting in the long run.
The main difficulty that the theorem overcomes is to express the complicated interactions of

the suppliers’ endogenous responses at all future time horizons to demand shocks at all future
time horizons. The theorem shows that these interactions can be represented in a strikingly
simpler form as a sum of products of only two components over the primitives of the economy,
Et [θt+s] and Gs. We now discuss the object Gs in detail.

The ij-th entry of the matrix Gs captures how expected consumer demand for good j at time
t+ s affects the time-t revenue of sector i through all possible paths of direct and indirect linkages
that has a cumulative delay of s periods. To interpret, consider writing out Gs explicitly for
s = 1, 2, 3. There is one positive sequence that sums to s = 1: Φ1 = {(1)}. There are two
positive sequences that sum to s = 2: Φ2 = {(1, 1) , (2)}. There are four positive sequences
that sum to s = 3: Φ2 = {(1, 1, 1) , (1, 2) , (2, 1) , (3)}. Hence, the formula in (10) implies that
G1 = βΩ1, G2 = β2 (Ω2 +Ω2

1), and G3 = β3 (Ω3 +Ω2Ω1 +Ω1Ω2 +Ω3
1). The power of the

matrices captures the number of walks (i.e., the number of edges) associated with a network path:
Ω1, Ω2, and Ω3 capture one-walks (i.e., direct connection between producer pairs) with one, two,
and three-period delays, respectively. Ω2

1 captures two-walks (i.e., paths with two edges that
connect producer pairs) where each walk has one-period delay, Ω2Ω1 is a two-walk where the
first walk has two-period delay and the second walk has one-period delay, and so on.
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The matrix Gs summarizes how the vector of expected demand at t + s affects the vector
of revenue at time t, through all possible paths of direct and indirect linkages that have cumu-
lative delays of s periods. While the concurrent consumer demand θt contributes to a sector’s
revenue directly, the one-period ahead demand θt+1 contributes to a sector’s revenue only indi-
rectly through other producers to which the focal sector supplies with one period delay (captured
by the matrix Ω1 in G1). The contribution of demand two-period ahead (θt+2) to a focal sector i’s
revenue (captured by G2) is through both (a) producers to which the focal sector supplies with
a delay of two periods (captured by the matrix Ω2), and (b) any producer k that uses an input j
with one period delay, and where sector j uses input i also with one period delay (captured by
the matrix Ω2

1). The contribution of θt+3 is captured by enumerating all possible paths that have
three periods of cumulative delays.

Theorem 1 states that the time-t revenue of a sector is the summation across contributions
from expected demand of different consumer goods at different time in the future, linked by all
possible paths of direct and indirect linkages in the production network with different delays.

In contrast to the existing literature on production networks, which includes static models
(e.g., Acemoglu et al., 2012), steady-states of dynamic models with one-period time-to-build de-
lays (e.g., Long and Plosser, 1983), and transition dynamics with time-invariant consumer de-
mand (e.g., Liu and Tsyvinski, 2024), Theorem 1 provides a full characterization that accounts for
time-varying consumer demand in a dynamic production network model with arbitrary and het-
erogeneous time-to-build. We now specialize Theorem 1 to time-invariant demand and discuss
how this special case generalizes known results in the literature to heterogeneous time-to-build.

Implication: Time-Invariant Demand with Heterogeneous Time-to-Build Specializing
Theorem 1 to time-invariant demand θt = θ̄, we can simplify the summation over Gs and obtain
the following result.

Corollary 1. When demand is time-invariant, sectoral revenues are

γ̄ =

(
I −

∞∑

d=1

βdΩd

)−1

θ̄.

Proof. See appendix A.2.

We can contrast this result with existing literature. When all input delays are exactly one
period (Ω = Ω1), Corollary 1 recovers as a special case the steady-state result of Long Jr and
Plosser (1983): γ̄ = (I − βΩ)−1 θ̄. Similarly, the static model of Acemoglu et al. (2012), which
yields sectoral revenue γ̄ = (I −Ω)−1 θ̄, emerges as a special case of our model when we allow
inputs to have zero delays.3

3For expositional clarity, our baseline model features a time-to-build of at least one period. We could extend the
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Corollary 1 extends these results on time-invariant sectoral size to a production network
with an arbitrary time-to-build structure. The corollary is a special case of Theorem 1, which
fully characterizes the sectoral revenue away from steady-state, given any sequences of expected
future consumer demand across different goods.

Implication: When Sectoral Demand Follows ARMA (p, q) Theorem 1 shows that the
equilibrium revenue in sector i at time t reflects the expected future demand Et [θk,t+s] at each
time horizon in every other sector k, through each possible walks of direct and indirect input-
output linkages that delivers output of i to k, accounting for the time-to-build associated with
each walk.

We now provide a characterization of equilibrium revenue when sectoral demand follows
a stationary and invertible ARMA (p, q). The process determines the expected future demand
Et [θk,t+s] under rational expectations. The analysis reveals an interesting parallel between (1)
how a current demand shock affects the expected future demand through the autoregression of
the demand shock process, and (2) how the time-to-build and the network structure determines
the importance of demand at different horizons.

Specifically, we consider an AR (∞) representation of the ARMA shock process:4

θit =
∞∑

s=1

δsθit−s + eit. (11)

where et has mean zero and independent of past shocks, and {δs} are autoregressive coefficients.
In this setting, the response of expected future demand to current demand innovation is

∂Et [θi,t+s]

∂eit
=
∑

ϕ∈Φs

∏

ϕj∈ϕ
δϕj
, (12)

where, as in Theorem 1, Φs is the set of positive sequences ϕ ≡ (ϕ1, . . . , ϕn) that sum to s.
That is, eit’s impact on Et [θi,t+1] is δ1, its impact on Et [θi,t+2] is δ21 + δ2, and on Et [θi,t+3] is
(δ31 + δ2δ1 + δ1δ2 + δ3), and so on. In other words, the impact of a demand shock eit on the
expected future demand at time t + s has a recursive structure: it is the sum of its impact on
demand Et [θi,t+k] for all 0 ≤ k ≤ s, and then the impact of Et [θi,t+k] on Et [θi,t+s] through the

baseline model to incorporate static inputs without time-to-build (i.e., dij = 0), thereby nesting the static production
network model as a special case. In that case, the formula in Theorem 1 needs to be modified as

γt = θt + (I −Ω0)
−1

∞∑

s=1

GsEt [θt+s] , where Gs ≡ βs
∑

ϕ∈Φs

∏

ϕj∈ϕ

[
Ωϕj (I −Ω0)

−1
]
,

where Ω0 ≡
[
ωij1dij=0

]′ captures the component of the input-output network with zero delay (proof is available
upon request). Corollary 1 extends naturally to γ̄ =

(
I −∑∞

d=0 β
dΩd

)−1
θ̄.

4The representation exists for all stationary and invertible ARMA (p, q) processes (see, e.g., Box et al., 2015).
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autoregressive demand process.
Note in particular the parallel between equation (12) and the object Gs in Theorem 1. Both

constructs enumerate all time gaps that sum to s. In Gs, the gap is due to the time-to-build delays;
in equation (12), the gap is due to the autoregressive structure of demand.

Proposition 1. When demand follows (11), the revenue response to a demand shock is

∂γt

∂et

= I +
∞∑

s=1

βs


∑

ϕ∈Φs

∏

ϕj∈ϕ
δϕj




∑

ϕ∈Φs

∏

ϕj∈ϕ
Ωϕj


 ,

where Φs is the set of positive, finite sequences ϕ ≡ (ϕ1, . . . , ϕn) that sum to s.

Quantities and Aggregate Implications Theorem 1 analytically solves for sectoral revenue
as a function of model primitives: the network structure, time-to-build, and the expected future
demand. The focus of our paper is on sectoral dynamics over supply chains, and subsequent sec-
tions of this paper build on Theorem 1. For completeness, Proposition 2 characterizes equilibrium
quantities and the aggregate implications. This characterization is the discrete-time analogue of
Liu and Tsyvinski (2024).

Proposition 2. Given the endogenous state variables {mij,t−q}q=1,...,dij
, exogenous productivities

{zit}, and the path of expected demand {Et [θt+s]}∞s=0, sectoral output {yit}, and consumption {cit}
at each time is

yit = zit

(
αiγit∑
k αkγkt

ℓ̄t

)αi∏

j

m
ωij

ij,t−dij
, cit =

θit
γit
yit, (13)

where γit is characterized by Theorem 1, and the total labor supplied ℓ̄t at time t satisfy:

v′
(
ℓ̄t
)
ℓ̄t =

∑

i

αiγit. (14)

The endogenous state variables evolve according to

mijt =
ωijβ

dijEt

[
γi,t+dij

]

γjt
yit. (15)

The dynamics over the aggregate consumption index ct ≡
∏

i c
θit
it follows directly from (13).

Proof. See Appendix A.3.

Inventories Our model features time-to-build delays in intermediate inputs, which implies pe-
riods during which inputs have been produced but not yet sold to consumers, or completed but
not immediately contributing value to production. Empirically, inputs which have been produced
but are not yet contributing value to production or sold to consumers are recorded as invento-
ries. Unlike models with inventory management margins to hedge against shocks (Khan and
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Thomas, 2007), inventories in our model have specific shelf-lives determined by the delay pa-
rameter dij . Nevertheless, our central theoretical results—Theorem 1 above and Theorem 2 in
the next section—depend only on the first moments of future demand. Hence, our theoretical
characterizations remain valid even in scenarios where the variance of shocks approaches zero,
effectively eliminating any hedging role of inventories.

3 The Supply Chain Response to Demand Shocks

In this section, we analyze the equilibrium response to demand shocks along the supply chain. We
begin by applying our characterization to a stochastic process for sectoral demand that has two
components: a monotone-decay AR(1) component and a hump-shaped AR(2) component. This
stochastic process, empirically motivated as shown later, defines the conditional expectation over
future demand based on current information Et [θt+s]. Specifically, we use Theorem 1 to analyze
how different sectoral demand shocks and their implied paths of expected future demand interact
with the heterogeneous time-to-build and shape the equilibrium response along the supply chain.
Section 3.1 describes the demand shock process and derives the impulse responses. Section 3.2
discusses equilibrium implications. In Section 3.3 we characterize the model under incomplete
information, i.e., when agents cannot distinguish between shocks with different time-profiles.

3.1 Two Components of Demand Shocks

We assume sectoral demand is mean-reverting and has two distinct components. The first compo-
nent captures transient consumer preference changes, modeled as monotone-decay AR(1) shocks,
where a demand innovation today is expected to monotonically diminish over time. The sec-
ond component captures slower-developing changes, such as those arising from habit formation,
consumer fads, or delayed adoption processes. These are modeled as hump-shaped AR(2) shocks,
where a current increase in demand initially leads to further demand increases in future horizons
before eventually declining. Specifically, sectoral demand θit follows:

θit − θ̄i = ρ
(
θit−1 − θ̄i

)
+ xit + ϵit, (16)

xit = ρxi,t−1 + uit. (17)

The parameter ρ < 1 captures the rate at which sectoral demand mean-reverts to the steady-state
or long-run level θ̄i. There are two sources of demand shocks: ϵit and uit, both are mean zero and
mean independent over-time. These shocks may be correlated across sectors, and their variances
may be time-varying (to ensure that sectoral demand stays non-negative). In our baseline speci-
fication, the two types of demand shocks share the same persistence parameter ρ. Appendix B.2
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extends our results in this section to an environment with heterogeneous ρ’s for the two types
of shocks.

The monotone-decay component of demand shocks is captured by ϵit, and the hump-shaped
component is captured by uit. In the absence of uit, the monotone-decay shock ϵit is AR(1). In
the absence of ϵit, the hump-shaped shock uit is AR(2).

Consider the response of expected demand Et [θi,t+s] to an impulse (ϵit or uit). We have:

For all s ≥ 0 :
∂Et [θi,t+s]

∂ϵit︸ ︷︷ ︸
response to a

monotone-decay shock

= ρs,
∂Et [θi,t+s]

∂uit︸ ︷︷ ︸
response to a

hump-shaped shock

= (s+ 1) ρs. (18)

The expected demand response to an ϵit shock declines monotonically and exponentially over
time at rate ρ. In contrast, for any ρ > 0.5, the expected demand response to a uit shock is
hump-shaped: (s+ 1) ρsuit increases initially over time s, peaking at s̄ ≡ 2ρ−1

1−ρ
, and subsequently

declines for s > s̄. Figure 2 illustrates the impulse-response of demand following a hump-shaped
shock at different persistence levels ρ. As shown, the impulse-response is hump-shaped, and
greater persistence (larger ρ) results in longer-lasting effects with peaks occurring later in time.

Figure 2. The impulse response ∂Et [θi,t+s]
/
∂uit of future demand following a hump-shaped

shock, for different levels of ρ

0 20 50
s

0

@Et[e3t+s]
@uit

; = 0:7
; = 0:8
; = 0:9

Impulse Responses under Complete Information We begin by assuming agents can sep-
arately observe the hump-shaped and monotone-decay components of demand. The conditional
expectation is Et [·] ≡ E

[
·| {θt−s,xt−s}s≥0

]
. Given the stochastic process of demand shocks, the

information set consisting of the history of state variables {θt−s,xt−s}s≥0 is identical to the in-
formation set consisting of the history of shocks {ϵt−s,ut−s}s≥0, and we use the two information
sets interchangeably.
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We let ·̃ denote deviations from steady-state levels, e.g., θ̃t ≡ θt − θ̄.5 We can then derive the
characterization of conditional expectations as

Et

[
θ̃t+s

]
= ρs

(
θ̃t − xt

)
+ (s+ 1) ρsxt. (19)

On the right-hand side, the first term captures the monotone-decay component of demand devia-
tion from the steady-state levels; this component decays exponentially at rate ρ. The second term
captures the hump-shaped component: for ρ > 1

2
, (s+ 1) ρs first increases and then decreases in

s, peaking at time s ≡ ⌈2ρ−1
1−ρ

⌉ periods into the future.
Substituting the conditional expectation into Theorem 1, we obtain how the two types of

demand shocks explicitly affect sectoral revenue. We first state and prove the result under general
network and time-to-build structure and then provide additional interpretation through a series
of examples.

Theorem 2. Under complete information when agents separately observe the hump-shaped and
monotone-decay components of demand shocks up to the current period, with demand characterized
by equations (16) and (17), sectoral revenue at time t follows

γ̃t = Gϵ
∞

(
θ̃t − xt

)
+Gx

∞xt, (20)

whereGϵ
∞ is the impact of demand’s monotone-decay component on revenue, andGx

∞ is the impact
of demand’s hump-shaped component, and

Gϵ
∞ ≡

(
I −

∞∑

d=1

(ρβ)d Ωd

)−1

, Gx
∞ ≡ Gϵ

∞

( ∞∑

d=1

d (ρβ)d Ωd

)
Gϵ

∞ +Gϵ
∞.

The impulse-response functions are:

∂γ̃t+s

∂ϵt
= ρsGϵ

∞,
∂γ̃t+s

∂ut

= sρsGϵ
∞ + ρsGx

∞.

Proof. See Appendix A.4.

3.2 Implications of Theorem 2

We now discuss several implications of Theorem 2.

3.2.1 Upstream’s Amplified Response to Expectations of Heightened Future Demand

We define the bullwhip effect as the phenomenon where a small downstream demand shock
lead to amplified response in upstream sectors. Theorem 2 implies that the bullwhip effect does
not occur when demand shocks decay monotonically, but it may arise when demand shocks are

5Since x = 0 in steady state, we have xt = x̃t.
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hump-shaped. Intuitively, the difference stems from producers’ positions along the supply chain:
those closer to the demand shock immediately increase production in response to current or near-
future expected demand. On the other hand, because of time-to-build delays, upstream producers
respond primarily to anticipated future demand. Therefore, when demand shocks monotonically
diminish over time, upstream producers’ responses are muted relative to downstream produc-
ers. In contrast, hump-shaped shocks generate anticipated future demand increases, eliciting an
amplified response in upstream sectors and thereby creating a pronounced bullwhip effect.

Formally, the revenue response to a concurrent monotone-decay shock is

∂γ̃t

/
∂ϵt = I + ρβΩ1 + (ρβ)2

(
Ω2

1 +Ω2

)
+ (ρβ)3

(
Ω3

1 +Ω1Ω2 +Ω2Ω1 +Ω3

)
+ · · · (21)

and the response to a concurrent hump-shaped shock is

∂γ̃t

/
∂ut = 1×I+2×ρβΩ1+3×(ρβ)2

(
Ω2

1 +Ω2

)
+4×(ρβ)3

(
Ω3

1 +Ω1Ω2 +Ω2Ω1 +Ω3

)
+· · ·
(22)

Each successive term in these summations captures the revenue response due to demand in a
subsequent period. For a monotone-decay shock, the weights associated with each term form
an exponentially decaying sequence: 1, ρβ, (ρβ)2 , . . . The further distant a sector is from the
shock, the lower is the impact of the shock on sectoral revenue. By contrast, the weights for a
hump-shaped shock have a time profile 1, 2ρβ, 3 (ρβ)2 , . . . , resulting in the potentially amplified
response in upstream sectors.

In the special case where each input has one period delay only, Gϵ
∞ = (I − ρβΩ1)

−1 and
Gx

∞ = (I − ρβΩ1)
−2, and equation (22) becomes

∂γ̃t

/
∂ut = (I − ρβΩ1)

−2 = I + 2ρβΩ1 + 3 (ρβΩ1)
2 + 4 (ρβΩ1)

3 + · · ·

where the Leontief-inverse-squared is the matrix analogous to the scalar summation formula∑∞
t=0 (t+ 1) ρt = (1− ρ)−2.
The key takeaway from the characterizations is that how producers respond to a downstream

demand shock depends on their positions along the supply chain. Downstream producers re-
spond directly to current demand, while upstream producers, due to time-to-build delays, respond
to anticipated future demand. This insight explains why hump-shaped shocks can propagate up-
stream and become significantly amplified, generating pronounced volatility in upstream sectors.

3.2.2 Example: A Vertical Network

In order to gain further intuition, consider a vertical supply chain with N = 4 sectors. Sector
1 produces with labor only; each successive sector i ≥ 2 produces using input i − 1 with inter-
mediate elasticity ωi,i−1 = 1. Each good i takes di periods to build before being used by sector
(i+ 1) as an input. All goods may be consumed. We say that sector j is upstream to sector i if
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j < i, as sector j’s output eventually becomes sector i’s input.
Given the vertical network structure, we can write the sectoral revenue response to a monotone-

decay demand shock as

∂γ̃t

∂ϵt
× ϵt =




1 (ρβ)d1 (ρβ)d1+d2 (ρβ)d1+d2+d3

0 1 (ρβ)d2 (ρβ)d2+d3

0 0 1 (ρβ)d3

0 0 0 1







ϵ1

ϵ2

ϵ3

ϵ4




and to a hump-shaped demand shock as

∂γ̃t

∂ut
×ut =




1 (1 + d1) (ρβ)
d1 (1 + d1 + d2) (ρβ)

d1+d2 (1 + d1 + d2 + d3) (ρβ)
d1+d2+d3

0 1 (1 + d2) (ρβ)
d2 (1 + d2 + d3) (ρβ)

d2+d3

0 0 1 (1 + d3) (ρβ)
d3

0 0 0 1







u1

u2

u3

u4




The sensitivity of sector j’s revenue with respect to a monotone-decay demand shock in
sector i ≥ j is (ρβ)d, where d is the total periods of delay for any value-added in sector j to be
used as inputs in sector i. By contrast, when the demand shock is hump-shaped, the sensitivity
is (d+ 1) (ρβ)d and is scaled by the additional (d+ 1) factor.

Consider, for example, a monotone-decay shock ϵ4 to the most downstream sector four and
examine the last column of the matrix ∂γ̃t

/
∂ϵt for the sectoral revenue response. Sector four’s

revenue responds one-for-one to the shock. The response of sector three is dampened by (ρβ)d3 <
1. The response of sector two is further dampened to (ρβ)d2+d3 . The further a producer is from
the monotone-decay shock—further upstream—the less is revenue response to the shock.

Now instead consider a hump-shaped shock u4 to the most downstream sector four, and we
examine the last column of ∂γ̃t

/
∂ut for sectoral revenue response. Sector four’s revenue re-

sponds one-for-one to the shock. The response of sector three is (1 + d3) (ρβ)
d3 and may be am-

plified. The response of sector two, which is further upstream to sector three, is (1 + d2 + d3) (ρβ)
d2+d3

and may be further amplified relative to sector three.
Note also that, for a sector sufficiently upstream, the response will become dampened and

eventually converges to zero (as lims→∞ (s+ 1) (ρβ)s = 0), as the distance between the sector
and the final demand shock could become large enough so that, due to the long time-to-build, the
sector does not even respond to hump-shaped demand shocks.

3.2.3 A Bilateral Measure of Supply Chain Delays

We now introduce a measure of the pairwise input delay between an input supplier and an input
user. Consider sector i’s revenue response to sector j’s hump-shaped demand shock relative to

19



that of a monotone-decay shock and define

ξij ≡





[
∂γ̃t

∂ut

]
ij

/[
∂γ̃t

∂ϵt

]
ij
− 1 if

[
∂γ̃t

∂ϵt

]
ij
̸= 0,

0 otherwise.
(23)

ξij is the element-wise ratio between the matrices capturing the response to hump-shaped and
monotone-decay shocks; ξij = 0 if

[
∂γ̃t

∂ϵt

]
ij
= 0. In the vertical supply chain example, the matrix

Ξ ≡
[
ξij
]

is

Ξ =




0 d1 d1 + d2 d1 + d2 + d3

0 0 d2 d2 + d3

0 0 0 d3

0 0 0 0



.

The ξij equals the delay between the production of input i and its eventual use in sector j, and is
set to zero if input i is never used (even indirectly) by sector j.

We now show that the notion of ξij as a bilateral measure of input delays extends naturally to
a general network structure. When multiple paths with varying delays connect an input supplier
i to an input user j, the measure ξij defined in (23) calculates the weighted average delay across
all possible paths from i to j. The weights reflect the value of inputs flowing along each route
and are parametrized by ρ. A smaller value of ρ increases the importance of paths with shorter
delays, whereas a larger value of ρ assigns greater weight to paths with longer delays.

Specifically, consider sector i’s revenue response to a monotone-decay shock in sector j.
Whenever

[
∂γ̃t

/
∂ϵt

]
ij

is non-zero, divide the ij-th entry on the right-hand side of equation
(21) by the left-hand side to obtain

1 =
[I]ij[

∂γ̃t

/
∂ϵt

]
ij

+
[ρβΩ1]ij[
∂γ̃t

/
∂ϵt

]
ij

+

[
(ρβ)

2 (
Ω2

1 +Ω2

)]
ij[

∂γ̃t

/
∂ϵt

]
ij

+

[
(ρβ)

3 (
Ω3

1 +Ω1Ω2 +Ω2Ω1 +Ω3

)]
ij[

∂γ̃t

/
∂ϵt

]
ij

+ · · · (24)

Sector i responds to sector j’s monotone-decay demand shock by raising production and sending
its output along direct or indirect network routes to be used as an input in sector j. Each term on
the right-hand side of (24) is the fraction of the output response that eventually becomes sector
j’s input with a specific time delay. The first term is the direct response to i’s own demand shock.
The second term is the revenue response to inputs sold with one-period delay to producers that
experience the demand shock. The third term is sector i’s share of revenue response to demand
shocks two periods later, and so on. In summary, each term in the infinite sequence reflects the
fraction of sector i’s sales response due to sales at further distant positions in the supply chain,
and the sequence sums to one.
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We can write ξij as

ξij = 0×
[I]ij[

∂γ̃t

/
∂ϵt

]
ij

+ 1×
[ρβΩ1]ij[
∂γ̃t

/
∂ϵt

]
ij

+ 2×

[
(ρβ)2

(
Ω2

1 +Ω2

)]
ij[

∂γ̃t

/
∂ϵt

]
ij

+ 3×

[
(ρβ)3

(
Ω3

1 +Ω1Ω2 +Ω2Ω1 +Ω3

)]
ij[

∂γ̃t

/
∂ϵt

]
ij

+ · · ·

ξij is therefore the average delay between when good i is produced and when it becomes an
input in sector j, weighted by the additional output of i sent along each route in response to a
monotone-decay demand shock to j.

Note that ξij depends on ρ, the autocorrelation coefficient of demand shocks. As ρ → 1, an
AR(1) shock ϵit leads to a permanent shift in the level of demand.6 Hence, limρ→1 ∂γ̃t

/
∂ϵt =

∂γ̄
/
∂θ̄ provides the steady-state changes in revenue following steady-state demand changes,

and limρ→1 ξij captures the average delay from an input supplier i to an input user j along each
network route using the steady-state response of goods flow along each route to demand changes
in j as the weights.

Consider an example network below. The network has two supply chains labeled a and b,
each with three sectors. Consider 3a as the focal sector. The delay from 2a to 3a is d2a. The delay
from 1a to 3a is d1a + d2a, as input 1a has to first go through producer 2a. The delay from any
sector along the b chain is unconnected to 3a and thus has a delay measure of zero. The matrix
Ξ therefore reveals the bilateral supply chain distance measured by production delays.

Figure 3. Two production chains
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ωij is therefore the average delay between when good i is produced and when it becomes an
input in sector j, weighted by the additional output of i sent along each route in response to a
monotone-decay demand shock to j.

Note that ωij depends on ε, the autocorrelation coe!cient of demand shocks. As ε → 1, an
AR(1) shock ϑit leads to a permanent shift in the level of demand.7 Hence, limω→1 ϖω̃t

/
ϖεt =

ϖω̄
/
ϖϑ̄ provides the steady-state changes in revenue following steady-state demand changes,

and limω→1 ωij captures the average delay from an input supplier i to an input user j along each
network route using the steady-state response of goods "ow along each route to demand changes
in j as the weights.

Consider an example network below. The network has two supply chains labeled a and b,
each with three sectors.

Figure 3. Two production chains

! =




0 d1a d1a + d2a 0 0 0
0 0 d2a 0 0 0
0 0 0 0 0 0
0 0 0 0 d1b d1b + d2b

0 0 0 0 0 d2b

0 0 0 0 0 0




Consider 3a as the focal sector. The delay from 2a to 3a is d2a. The delay from 1a to 3a is
d1a + d2a, as input 1a has to #rst go through producer 2a. The delay from any sector along the b

chain is unconnected to 3a and thus has a delay measure of zero. The matrix ! therefore reveals
the bilateral supply chain distance measured by production delays.

It is important to note that our measure ωij di$ers from the standard Leontief inverse. The
latter captures a notion of network dependence—the network-adjusted value of each input used
to produce a unit value of each good, whether in steady-state (ϖω̄

/
ϖϑ̄ =

(
I ↑∑↑

d=1 ϱ
d”d

)↓1) or

in response to monotone-decay demand shocks (ϖω̃t

/
ϖεt =

(
I ↑∑↑

d=1 (εϱ)d ”d

)↓1

). Instead,
our bilateral measure ωij captures a notion of network distance due to delays. Our measure ωij
can therefore be used to identify the ordering of inputs along each good-speci#c supply chains,
as evident from the example in Figure 3 of two production chains. We implement this measure
empirically in Section XXX.

Related to ωij is the Upstreamness measure ςi of Antràs, Chor, Fally and Hillberry (2012),
which is de#ned as the average distance in terms of production stages from a sector i to the
#nal consumer demand in a static model. In our dynamic context, ςi as de#ned by Antràs et al.

7A hump-shaped AR(2) shock ut becomes a permanent change in the growth of demand as ω → 1.
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It is important to note that our measure ξij differs from the standard Leontief inverse. The
latter captures a notion of network dependence—the network-adjusted value of each input used
to produce a unit value of each good, whether in steady-state (∂γ̄

/
∂θ̄ =

(
I −∑∞

d=1 β
dΩd

)−1) or

in response to monotone-decay demand shocks (∂γ̃t

/
∂ϵt =

(
I −∑∞

d=1 (ρβ)
d Ωd

)−1

). Instead,
our bilateral measure ξij captures a notion of network distance due to delays. Our measure ξij
can therefore be used to identify the ordering of inputs along each good-specific supply chains,
as evident from the example in Figure 3 of two production chains. We implement this measure
empirically in Section 4.

Related to ξij is the influential upstreamness measure ψi of Antràs et al. (2012), which is
6A hump-shaped AR(2) shock ut becomes a permanent change in the growth of demand as ρ → 1.
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defined as the average distance in terms of production stages from a sector i to the final con-
sumer demand in a static model. Antràs et al. (2012)’s measure ψi is isomorphic to the av-
erage delay in our model from input i to all consumption goods j, weighing each j by the
fraction of sector i’s value-added that eventually gets consumed through j in steady-state, in
a special case without discounting and where all input delays are one period only (specifically,

ψi = limβ,ρ→1

∑
j ξij

[(I−Ω)−1]
ij
θ̄j∑

k[(I−Ω)−1]
ik
θ̄k

). Our delay measure ξij also relates to the empirical measure
of pair-wise upstreamness proposed by Alfaro et al. (2019). Our model microfounds and gener-
alizes these empirical upstreamness measures to accommodate different lengths of production
delays.

3.2.4 Hump-shaped Demand Shocks and Amplified Volatility in Upstream Sectors

In sections 3.2.1 and 3.2.2 we have shown that upstream sectors’ revenues are more responsive
to hump-shaped demand shocks. Under these shocks, an increase in demand at time t implies a
higher expected future demand, to which upstream is more responsive due to time-to-build.

In this section, we formally derive the volatility of sectoral revenue in terms of period-to-
period changes and show that the same intuition implies that under hump-shaped shocks, up-
stream sectors tend to have higher volatility. First, we show that our derivation of Theorem 2
extends naturally for deriving the variance of one-period-ahead sectoral revenue conditional on
the current information.

Proposition 3. Under complete information, the sectoral revenue volatility is:

V art
(
γ̃t+1

)
= Gϵ

∞Σϵ
tG

ϵ′

∞ +Gx
∞Σu

tG
x′

∞,

where Σϵ
t and Σu

t are the variance-covariance matrices of ϵt and ut, respectively, and Gϵ
∞,G

x
∞

are as defined in Theorem 2.

Proof. See Appendix A.5.

As in Theorem 2, the matrix Gϵ
∞ characterizes the impact of demand’s monotone-decay com-

ponent on revenue, and Gx
∞ characterizes the impact of demand’s hump-shaped component.

Conditional on current period information, Gϵ
∞ΣϵGϵ′

∞ and Gx
∞ΣuGx′

∞ characterize two demand
components of the variance of the one-period-ahead revenue. In parallel to our analysis in sec-
tions 3.2.1 and 3.2.2, Proposition 3 shows that monotone-decay demand shocks from downstream
sectors create dampened volatility in upstream revenue and hump-shaped demand shocks create
amplified volatility.

Importantly, this result differs from the cross-sectional claim that upstream sectors may ex-
hibit higher volatility—which could be driven by other factors such as supplying multiple down-
stream sectors and thereby accumulating many downstream shocks. Instead, Proposition 3 shows
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that hump-shaped demand shocks in a single downstream sector can create amplified effects in
upstream even when there is just a single input-output path connecting these sectors.

In order to demonstrate Proposition 3’s implication as clearly as possible, consider the ver-
tical supply chain example in Section 3.2.2. When only the most downstream sector four faces
uncertain demand—with variance (σϵ

4)
2 and (σu

4 )
2 for the monotone-decay and hump-shaped

shocks, respectively—the conditional variance of one-period-ahead revenue V art (γ̃i,t+1) in the
most downstream sector (i = 4) and the most upstream sector (i = 1) are, respectively,

V art (γ̃4,t+1) = (σϵ
4)

2 + (σu
4 )

2

V art (γ̃1,t+1) = (ρβ)2(d1+d2+d3) (σϵ
4)

2 + (1 + d1 + d2 + d3)
2 (ρβ)2(d1+d2+d3) (σu

4 )
2

The effect of monotone-decay demand shocks on upstream revenue is dampened by a factor of
(ρβ)2(d1+d2+d3), whereas the effect of hump-shaped demand shocks may be magnified.

3.3 Incomplete Information

Our analysis thus far has demonstrated that downstream sectors’ revenue responds more to
monotone-decay demand shocks, whereas upstream sectors’ revenue may respond more to hump-
shaped demand shocks. We now generalize our environment to the setting where agents only
observe the realized demand θ̃t but not the separate components. That is, when a demand shock
arises at time t, it is not possible for agents to accurately assess its impact on future demand. In
this setting, agents, including the social planner, need to solve a filtering problem and forecast
future demand based on the history of demand shocks. We show that the impulse response of
sectoral revenue to a demand shock is in general hump-shaped, that upstream sectors have more
pronounced revenue response, and that this is especially true when demand shocks tend to be
more hump-shaped.

Formally, agents observe only the history of demand
{
θ̃t−s

}
s≥0

but not the two components

separately. The conditional expectation operator is then defined as Et [·] ≡ E
[
·|
{
θ̃t−s

}
s≥0

]
. In

this setting, agents, including the social planner, need to solve a filtering problem and forecast
future demand based on the history of demand shocks.

The exogenous state variables at time t for consumer demand continue to be
(
θ̃t,xt

)
, as in the

baseline model with complete information. Under incomplete information, only θ̃t is observable;
xt, the hump-shaped component of current demand, is a hidden state. There is an additional

endogenous state variable that captures the agents’ belief x̂t ≡ Et

[
xt|
{
θ̃t−s

}
s≥0

]
of the hidden

state based on the history of demand up to time t. We refer x̂t as the nowcast (see Kalman, 1960,
Kalman and Bucy, 1961).
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The demand shock at time t is defined as the unexpected innovation in demand:

vt ≡ θ̃t − Et−1

[
θ̃t

]
= θ̃t − ρ

(
θ̃t−1 + x̂t−1

)
.

Kalman Filter We posit that learning follows a Kalman filter, which provides the optimal now-
cast under Gaussian shocks and the best linear nowcast (that minimizes the expected squared
loss) under non-Gaussian shocks (Humpherys et al., 2012). Generally, demand shocks need to be
non-stationary and non-Gaussian in order for demand to be non-negative; nevertheless, our anal-
ysis under incomplete information can be interpreted as analyzing the linearized model around
a steady-state shocks approximated by Gaussian distributions. Hence, for expositional simplicity
and also relevant for our empirical specification, we assume the covariance matrices Σu and Σϵ

are time-invariant, so that the Kalman filter is stationary.7

In this case, the demand innovation vt updates the nowcast according to the law of motion:

x̂t = ρx̂t−1 +Kvt (25)

The Kalman gain K is an N ×N matrix as derived in Appendix A.6:

K =
(
ρ2F +Σu

) (
Σϵ + ρ2F +Σu

)−1
, (26)

withΣu is the covariance matrix of hump-shaped shocks,Σϵ is the covariance matrix of monotone-
decay shocks, and F ≡ V art (xt − x̂t), a measure of the accuracy of the nowcast, satisfies the
following equation:

F = Σϵ
(
Σϵ + ρ2F +Σu

)−1 (
ρ2F +Σu

)
. (27)

The following proposition derives the impulse-response of expected future demand Et

[
θ̃t+s

]

and revenue Et [γ̃t+s] to demand shocks.

Theorem 3. Under incomplete information where learning follows (25), the response of the vector
of expected future demand to a vector of demand shocks vt ≡ θ̃t − Et−1

[
θ̃t

]
at time t is

∂Et

[
θ̃t+s

]

∂vt

= ρsI + sρsK.

The response of the vector of expected future revenue to demand shocks is

∂Et [γ̃t+s]

∂vt

= ρs (Gϵ
∞ (I + (s− 1)K) +Gx

∞K) ,

where I is the identity matrix,Gϵ
∞ and Gx

∞ are as defined in Theorem 2.

Proof. See Appendix A.7.
7There is a large literature on nonlinear and nonstationary filtering (e.g., Hamilton, 1989; Ito and Xiong, 2000;

Farmer, 2021); the extension to this case is straightforward but less expositionally clear.
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Theorem 3 characterizes the expected time path of each sector i’s consumer demand and sec-
toral revenue following an unexpected innovation in the demand for each good j. The impulse-
response of expected demand is governed by the Kalman gain matrix K which characterizes
learning. The impulse-response of expected revenue depends on both the network structure and
the delay (characterized by Gϵ

∞ and Gx
∞), as well as learning (characterized by K). When there

are only monotone-decay shocks ϵt (i.e., the covariance matrix of ut is zero), the Kalman gain is
the zero matrix, and ∂Et[γ̃t+s]

∂vt
coincides with the object ∂Et[γ̃t+s]

∂ϵt
under complete information (c.f.

Theorem 2). When there are only hump-shaped shocks, the Kalman gain is the identity matrix,
and ∂Et[γ̃t+s]

∂vt
coincides with the object ∂Et[γ̃t+s]

∂ut
under complete information.

When demand shocks are uncorrelated across sectors, the Kalman gain matrix becomes di-
agonal, with the i-th entry κi increasing in the relative variance of hump-shaped AR(2) shocks
compared to monotone-decay AR(1) shocks.8 As a result, sectors dominated by hump-shaped
shocks exhibit larger values of κi. Empirically, since demand shocks are largely sector-specific
and weakly correlated across sectors, the Kalman gain matrix K is diagonally dominant, as we
confirm in the data (Section 4.4).

A key prediction of our model under complete information is that more upstream sectors have
amplified response to hump-shaped demand shocks but not monotone-decay shocks (Theorem 2).
Theorem 3 shows that under incomplete information and when both types of shocks are present,
the impulse-response of sectoral revenue to demand innovations are in general hump-shaped,
that as one moves from downstream to upstream the response first becomes more pronounced
before it dampens, and that the initial amplification to upstream is especially true when demand
shocks tend to be more hump-shaped.

To see this, consider again the vertical supply chain example as in Section 3.2.2, where sector i
supplies to i+1 for i = 1, 2, 3. Suppose demand shocks are uncorrelated across sectors. Theorem
3 implies that, following a demand innovation in the most downstream sector 4, the expected time
path of sectoral revenue is

∂Et [γ̃t+s]

∂v4t
= ρs ×




(1 + sκ+ d1κ+ d2κ+ d3κ) (ρβ)
d1+d2+d3

(1 + sκ+ d2κ+ d3κ) (ρβ)
d2+d3

(1 + sκ+ d3κ) (ρβ)
d3

1 + sκ



,

where κ is the Kalman gain associated with the demand innovation for good 4, the most down-
stream sector.

The sectoral revenue responses to a demand innovation in the incomplete information envi-
ronment exhibit three features similar as the responses to hump-shaped shocks under complete

8Specifically, κi =
−(1+(σu

i /σ
ϵ
i )

2−ρ2)+
√(

1+(σu
i /σ

ϵ
i)

2−ρ2
)2

+4ρ2(σu
i /σ

ϵ
i)

2

2ρ2 .
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information. First, sectoral responses are hump-shaped over time: i.e., as s increases, the term sκ

is increasing, the term ρs is decreasing, and their product first increases over time (for ρ > 1/2)
but eventually decreases as s → ∞. Second, upstream sectors may exhibit amplified response
relative to downstream, and third, the amplified response eventually dies out as one goes fur-
ther upstream (for sufficiently high ρ, (1 + sκ+ xκ) (ρβ)x is initially increasing but eventually
decreasing in x).

The new implications under incomplete information are two-fold. First, the hump-shaped
impulse-response becomes more pronounced along the supply chain when the Kalman gain κ is
larger. This occurs precisely when demand shocks tends to more hump-shaped—that is, when
the relative standard deviation of hump-shaped shocks is higher. Second, higher Kalman gains
also lead to greater amplification of the sectoral response as shocks propagate upstream along
the supply chain.

We illustrate these implications in Figure 4, which shows the expected response of sectoral
revenue to a downstream shock at different positions along the supply chain. The left panel
displays the downstream sector’s response, the middle panel shows a relatively upstream sector’s
response, and the right panel illustrates the response of a sector located further upstream. The
blue curves represent impulse responses under a high Kalman gain, corresponding to sectors
where demand shocks tend to be more hump-shaped, while the red curves represent sectors with
lower Kalman gains. Consistent with our theory, the sectoral response is initially amplified as
shocks propagate upstream (from left to middle panels), but this amplification diminishes for
sectors situated further upstream (right panel). Crucially, when demand shocks are more likely
to be hump-shaped (higher Kalman gain), both the hump-shaped downstream responses and the
initial upstream amplification effects become notably more pronounced. We test these predictions
empirically in Section 4.3.

Figure 4. The expected revenue paths under high κ and low κ for a vertical supply chain
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Finally, we formally derive the sectoral revenue volatility under incomplete information.
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Proposition 4. Under incomplete information, the volatility of demand is

V art

(
θ̃t+1

)
= ρ2F +Σϵ +Σu, (28)

and the volatility of sectoral revenue is:

V art
(
γ̃t+1

)
= (Gϵ

∞ −Gϵ
∞K +Gx

∞K)V art

(
θ̃t+1

)
(Gϵ

∞ −Gϵ
∞K +Gx

∞K)
′
, (29)

where Σϵ and Σu are the variance-covariance matrices of ϵt and ut, respectively, and Gϵ
∞,G

x
∞

are as defined in Theorem 2. K is the matrix of Kalman gains as in (26), and F ≡ V art (xt − x̂t)

as in (27).

Proof. See Appendix A.8.

Demand volatility under incomplete information consists of three parts. The term ρ2F cap-
tures the forecast error of the hidden state. Σϵ and Σu captures the uncertainty due to the two
types of demand shocks. Demand volatility then translates into sectoral volatility along the sup-
ply chain. When the Kalman gain is the identity matrix (K = I), sectoral volatility simplifies
to V art

(
γ̃t+1

)
= Gx

∞ΣuGx′

∞, which corresponds to the complete information case with only
hump-shaped shocks. Similarly, when the Kalman gain is the zero matrix (K = 0), sectoral
volatility simplifies to V art

(
γ̃t+1

)
= Gϵ

∞ΣϵGϵ′

∞, which corresponds to the complete informa-
tion case with only monotone-decay shocks.

4 Empirical Evidence and Quantification

We now turn to the empirical analysis with three goals. First, in Section 4.2 we provide evidence of
the bullwhip effect in the cross section. That is, within a sectoral supply chain, upstream sectors
tend to exhibit higher volatility than downstream sectors. Second, we extract innovations to
downstream value-added and estimate the impulse-response functions of upstream sectors along
the supply chain in Section 4.3. We demonstrate a number of features of the estimated impulse-
response functions that are consistent with our model’s predictions, thereby providing a sharp
test of our theory. Third, in Section 4.4 we conduct a model-based exercise. We infer the empirical
process of demand shocks using the model and demonstrate that hump-shaped demand shocks for
downstream sectors account for a quantitatively significant share of sectoral fluctuations along
the supply chains.

4.1 Data

We use data from three main sources. First is the Industrial Production (IP) data published by the
Federal Reserve Board. The data set has panel information on the sectoral value-added for manu-
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facturing industries over the period 1972-2023, with industries classified by the North American
Industry Classification System (NAICS). To smooth out measurement errors and high-frequency
shocks, we average the monthly data to construct quarterly sectoral value-added in our baseline
analysis, while monthly specifications are presented as robustness checks in Appendix D.9.

Second, to construct our bilateral measure of supply chains, we need information on input-
output linkages and input time-to-build delays. For input-output data, we utilize the 2007 BEA
input-output (IO) use table,9 from which we construct input cost shares ωij and sectoral value-
added intensities (value-added to revenue ratio).

We follow Foerster et al. (2011)’s algorithm to concord between the IP and IO datasets. This
procedure results in 114 manufacturing industries appearing in both datasets, as well as 127 non-
IP sectors present only in the IO table. Among the IP industries, the majority (65 out of 114) cor-
responds to four-digit NAICS codes, with the remaining mapping into either three- (4 industries)
or five-digit (45 industries) NAICS codes. We format the IP data (“Value-Added Proportions”)
to represent sectoral value-added shares—each sector’s value-added as a proportion of the total
value-added across all 114 IP sectors. This format aligns with our analysis, which centers on
sectoral and supply chain dynamics rather than aggregate effects.10

Third, we need information on time-to-build delays. Our baseline strategy is to use the back-
log ratio for each input, i.e., the ratio between the stock value of unfilled orders and the flow
value of goods delivered, as a measure of supply chain delays (Liu and Tsyvinski, 2024). The
strategy yields a supplier-specific measure of delay. We rely on the U.S. Census M3 survey of
manufacturers’ shipments, inventories, and orders. The data set provides broad-based, monthly
statistical data on economic conditions in the manufacturing sector. For each industry, we com-
pute the average backlog ratio between the years 2015 and 2019. We match industries in the M3
survey to the finest partition possible in the IO table. We impute the backlog ratio using the
sample averages respectively for durable goods sectors and non-durable goods sectors that are
not in the M3 survey. Because the backlog ratio captures only the average time between orders
placed and orders received but not delays due to the production process, we round up the backlog
ratios when converting from months to quarters. Based on this procedure, twenty sectors have
time-to-build delays of two quarters, two sectors have delays of three quarters, four sectors have
delays of four, and one sector (“Ship and Boat Building”) has five-quarter delays.

As robustness checks, we implement two alternative strategies for measuring time-to-build
delays. The first alternative strategy follows the recent work of Antràs and Tubdenov (2025) and
infers an input-buyer-specific measure of time-to-build based on the ratio between the value of

9The BEA IO tables are available every five years. We use the 2007 version as it is in the second half of our sample
but before the Great Financial Crisis. Our results are not sensitive to this choice.

10We impute missing data according to the Federal Reserve Board’s recommended methodology: if sector C is
made up of sector A less sector B, then the value added of sector C is the value-added of A less than that of B.
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inventories and cost of goods sold (COGS) using the COMPUSTAT data. This measure captures
production delays but not shipping delays and is thus complementary to our baseline measure.
The second alternative strategy specifies the total time-to-build delay from an input producer j
to input user i is the sum of the backlog ratio of good j and the inventory-to-COGS ratio of good
i. Our main results remain robust across these alternative measures of time-to-build—network
structure consistently plays a more significant role, as detailed in the Appendix D.5.

4.2 Higher Volatility in Upstream Sectors Across Supply Chains

We first provide cross-sectional evidence for the bullwhip effect across supply chains of the U.S.
production network: upstream sectors within a supply chain tend to have higher volatility.

We measure sectoral volatility as the standard deviation of the year-on-year (YoY) growth in
sectoral value-added shares (relative to total value-added across IP industries) over our sample.
We use YoY growth specifically to control for seasonal fluctuations in sectoral value-added.

Although we have formulated our theory in terms of sectoral revenue, it can be readily re-
stated in terms of value-added (observed from the IP data), which equals revenue multiplied by
the sectoral value-added intensity (obtained from the BEA IO table).

The main challenge in documenting the bullwhip effect is to identify the supply chains in the
US production network. To do so, we rely on our bilateral measure of supply chain delays ξij ,
following the procedure described in Section 3.2.3.

We start by identifying a set D of 25 downstream sectors that are important in the consump-
tion bundle, following Antràs et al. (2012).11 These sectors are listed in Table 1; they supply most
of their output directly to the final consumer instead of other producers. Broadly speaking, these
sectors fall into the categories of transportation, food, and other household consumption goods.

We then identify the supply chain for each of these downstream sectors. First, for each down-
stream sector j ∈ D, we keep a set of sectors Uj that are considered as direct or indirect suppliers
to j: a sector i is in the set Uj if producing 200 dollar of j’s output requires at least one dollar
of input i, directly or indirectly. Formally, this means that the ij-th entry of the Leontief inverse
Lij ≡ (I−Ω)−1

ij is greater than 0.5 percent. This threshold is chosen so that the each downstream
good has on average 25 (median 26) number of sectors along its supply chain.

Next, for each downstream sector j ∈ D, we order the set of suppliers to j using our bilateral
supply chain delay measure ξij , following the procedure described in Section 3.2.3. In the baseline,
we set ρ = β = 1when calculating ξij , which depends on the product ρβ. Our results are robust to

11Specifically, we first select the 30 most downstream sectors according to the upstreamness measure by Antràs
et al. (2012). We then drop “Other Miscellaneous Manufacturing”, “Construction Machinery”, “Agricultural Imple-
ments”, “Industrial Machinery” and “Support Activities for Mining”, as these five sectors do not account for significant
consumer expenditure and are thus not important for the consumer demand.
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Table 1. The list of twenty-five downstream sectors

Apparel Coffee and Tea
Ship and Boat Building Other Transportation Equipment
Newspaper Publishers Heavy Duty Trucks
Tobacco Office And Other Furniture
Soft Drinks and Ice Aerospace Products and Parts
Bakeries and Tortilla Breweries
Motor Vehicle Bodies and Trailers Other Food Except Coffee and Tea
Carpet and Rug Mills Pharmaceuticals and Medicines
Soap, Cleaning Compounds, and Toilet Preparation Navigational/Measuring/Electromedical Instruments
Periodical, Book, and Other Publishers Sugar and Confectionery Products
Automobiles and Light Duty Motor Vehicles Animal Slaughtering and Processing
Major Electrical Household Appliances Medical Equipment and Supplies
Fruit and Vegetable Preserving and Specialty Foods

using alternative values of these parameters—as Appendix Figure A.10 shows, ξij remains highly
correlated across a wide range of ρβ—including a realistic quarterly discount factor β = 0.98 and
the rate of decay parameter ρ = 0.818 estimated from the data (see Section 4.4). The resulting
measure captures the average number of quarters in the time-to-build delays for input i to reach
producer j, accounting for all the direct and indirect network linkages from i to j. Within the
supply chain of each good j, we interpret sector i ∈ Uj as more upstream to k ∈ Uj if there is a
longer delay from input i to producer j than from input k.

Take “Automobiles and Light Duty Motor Vehicles” (“automobiles” for short) and “Motor Ve-
hicle Bodies and Trailers” (“trailers” for short) as two examples of downstream sectors. Despite
the fact that these two sectors share many common suppliers—such as “Machine Shops; Turned
Products; and Screws, Nuts, and Bolts”, “Paperboard Containers”, “Semiconductors”, “Iron and
Steel Products”, and “Electric Power Generation, Transmission and Distribution”—our measure
can isolate the differences in their supply chains. Specifically, our measure identifies that the sec-
tors most immediately upstream to automobiles are “Motor Vehicle Bodies and Trailers”, “Motor
Vehicle Parts” and “Tires”. By contrast, those that are most immediately upstream to trailers
include “Major Electrical Household Appliances” and “Millwork”.

Figure 5 shows the relationship between upstreamness, as measured by supply chain delays,
and volatility, along the sector-specific supply chain for 9 of the 25 downstream sectors (we pro-
duce the same figure for each of the remaining 16 downstream sectors in Appendix Figure A.2).12

Specifically, each panel represents the supply chain associated with a downstream sector, as indi-
cated by the subtitle (e.g., the top-left panel is for the supply chain of automobiles). Within each

12We include only non-durable inputs—goods for which no more than 50% of its final use goes into fixed capital
formation in the BEA IO table—when investigating this cross-sectional relationship, as the volatility of durable goods
may be driven by important factors not considered in the model.
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panel, a circle represents an input supplier along the supply chain (e.g., the bottom circle in the
top-left panel is “Motor Vehicle Parts”). The Y-axis captures the time-to-build delays from the
supplier to the downstream producer, i.e., a notion of upstreamness. The X-axis is the volatility
in the YoY value-added growth of the supplier. The size of each circle represents the share of the
total downstream cost that is spent on each input, directly or indirectly.

The key takeaway from Figure 5 is the significant positive relationship between sectoral
volatility and upstreamness, an empirical pattern consistently observed across supply chains for
all 25 downstream sectors. In terms of magnitude, pooling across 25 supply chains we find that
going from 25 to 75 percentile in terms of upstreamness is associated with 5.5 percentage points
higher volatility in value-added growth. This effect is pronounced across transportation, food,
households consumption goods, and all other categories of downstream goods.

One potential concern is that the observed positive relationship between sectoral volatility
and upstreamness might be driven by the volatility of commodity prices, as four commodity
sectors occupy upstream positions across many supply chains.13 However, we find that this not
the case. Appendix Figure A.3 shows that the positive relationship between sectoral volatility and
upstreamness remains qualitatively unchanged even after excluding these commodity sectors.

4.3 Supply Chain Response to Downstream Value-Added Shocks

Crucially, our theory’s predictions extend beyond the cross-sectional observation that upstream
sectors often exhibit higher volatility, an empirical regularity that could be driven by other fac-
tors such as supplying multiple downstream industries and thereby aggregating multiple shocks.
Instead, our theory provides precise predictions regarding impulse-response dynamics. Specif-
ically, Theorem 3 implies that following an innovation to value-added in downstream sectors
dominated by AR(2) shocks:

1. The downstream sectors’ own value-added exhibits a hump-shaped response over time.

2. Value-added responses along the supply chain are also hump-shaped and initially amplified
as shocks propagate upstream.

3. Moving along the supply chain, the initial amplification diminishes in sectors located fur-
ther upstream.

4. The downstream hump-shaped responses and upstream amplification effects should be
stronger in sectors where AR(2) shocks dominate, while such patterns could be absent in
sectors characterized primarily by AR(1) shocks.

13These sectors are “Oil and Gas extraction”, “Coal mining”, “Copper, Nickel, Lead, and Zinc Mining”, and “Iron,
Gold, Silver and Other Metal Ore Mining”.
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Figure 5. Along supply chains, upstream sectors exhibit higher volatility
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We empirically test these predictions by first removing linear time trends from each sector’s
value-added series, standardizing the detrended data, and using these standardized z-scores in
our analysis to account for heterogeneous sectoral sizes.

Although in our theoretical framework, fluctuations in value-added (i.e., revenue multiplied
by sectoral value-added intensity) originate exclusively from demand shocks—since productiv-
ity shocks have offsetting effects on prices and quantities—our empirically testable predictions
directly concern fluctuations in sectoral value-added.

In the main text, we directly test the predictions based on extracting shocks to downstream
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value-added and estimating their impulse response functions along supply chains. Addition-
ally, in Appendix D.10, we discuss a robustness check using a generalized model with constant-
elasticity-of-substitution (CES) production functions to explicitly control for sector-specific cost
shocks. Specifically, we solve the CES model with one-period delays, linearize it around a steady-
state, and derive separate implications of cost shocks and demand shocks. This approach enables
us to nonparametrically control for cost shocks when estimating impulse-response functions.
Our empirical findings remain robust after incorporating these controls.

Downstream Value-Added Has Both AR(1) and AR(2) Shocks We begin by using a reduced-
form test to show that the time-series of detrended downstream value-added is well captured by
a stochastic process with AR(1) and AR(2) shocks. Specifically, we follow the econometrics lit-
erature and use partial autocorrelation function (PACF) to select appropriate lags in an AR (p)

model (Box et al., 2015). The PACF coefficient ϕk of a time series is defined as the autocorrelation
at lag k after conditioning on all previous lags 1 through k − 1. According to the Box–Jenkins
method (Box et al., 2015), insignificance of the PACF coefficient at lag p + 1 indicates that the
time-series can be modeled as an AR(p) process.

We estimate the PACF coefficient sector-by-sector for the 25 downstream sectors i ∈ D. We
find that in our sample, all twenty-five downstream sectors have statistically significant (5%)
PACF coefficients at lag 1 for the time-series of their value-added. Twenty-one out of twenty-
five downstream sectors have statistically significant PACF coefficients at lag 2. Only two sectors
(“Tobacco”, “Other Food Except Coffee and Tea”) have statistically significant PACF coefficients at
lag 3. These findings suggest that downstream value-added is well approximated by a stochastic
process with AR(1) and AR(2) shocks.

Moreover, our model implies that sectors with larger absolute values of PACF coefficients at
lag 2 (|ϕi,2|) are precisely those in which hump-shaped AR(2) shocks play a more dominant role.
Specifically, |ϕi,2| is increasing in the relative variance of AR(2) shocks, (σu

i /σ
ϵ
i )

2.14 Conversely,
sectors with smaller |ϕi,2| predominantly experience monotone-decay AR(1) shocks.

To test our model’s prediction on the differential supply chain response following shocks to
these sectors, we define Pi as the dummy variable for whether |ϕi,2| is above median among the
25 downstream sectors. For expositional simplicity we refer to these sectors as having relatively
large AR(2) components.

Extracting Innovations in Downstream Value-Added We use local projections to estimate
the impulse-response along the supply chain follows to downstream value-added shocks. To

14Formally, ϕi,1 = ρ+

ρ

(1−ρ2)2
(σu

i /σ
ϵ
i )
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estimate the value-added shock of the 25 downstream sectors, we project each sector’s value-
added on its own lags, as well as sector fixed effects µi and time fixed effects µt, and we extract
the residuals. Specifically, the value-added shocks rit in a downstream sector i is the innovation
in the following:

V Adown
it =

p∑

s=1

γsV Adown
i,t−s + µi + µt + rit, i ∈ D. (30)

In the baseline specification, we include p = 2 lags, consistent with our model specification
of AR(1) and AR(2) shocks. Our results are not sensitive to the choice of lags; Appendix D.7
replicates our results for p = 1 and p = 3 as robustness checks.

Impulse-Response of Downstream Value-Added to Its Own Innovations Equipped with
downstream’s value-added shocks, we first estimate the impact of a shock on the downstream
sector’s own value-added in subsequent periods:

V Adown
i,t+h − V Adown

i,t−1 = αh
0rit + αh

1rit × Pi +Xit + ζit, with controls Xit ∈
{{

V Adown
i,t−s

}p
s=1

, µi, µt

}
. (31)

In the set of regressions, value-added in each quarter t + h is regressed on the estimated value-
added shock in quarter t, as well as controls Xit. Recall Pi is the dummy for whether sector i
has a dominant AR(2) component (i.e., the PACF coefficient |ϕi,2| is above the median among all
downstream sectors). The estimate αh

0 represents the impulse response function at horizon h for
downstream sector i’s value-added when the dummy Pi is turned off, and the estimate αh

0 + αh
1

represents the impulse response function when the dummy is turned on.
The top-left panel (a) in Figure 6 reports the coefficients αh

0 (solid line) and αh
0 + αh

1 (dashed
line), displaying the estimates from equation (31) of the impact of a demand shock from down-
stream sectors in quarter t on their own value-added share in quarter t+h for a 2-year (8 quarters)
horizon. Panel (a) in Figure 6 shows hump-shaped, mean-reverting impulse response functions,
especially those sectors with relatively large AR(2) components. This is consistent with our model
specification of AR(2) shocks, which implies hump-shaped response in downstream value-added
following its own innovation. In terms of magnitude, for those sectors with large AR(2) compo-
nents, an one standard deviation innovation in value-added to a downstream sector raises its own
concurrent value-added by one unit by our construction. The expected value added increases over
time, peaking in the third quarter at 1.6 standard deviation above the mean. The impact starts
to decline after three quarters, but the impact is persistent and only decays to about half of the
initial impact after two years. For those sectors with small AR(2) components, the hump-shaped
response is present but significantly less pronounced. The impact of the shock peaks in one
quarter but is nevertheless persistent with a half-life of about two years.

Appendix Figure A.4 further confirms the presence of a pronounced hump-shaped impulse
response function when all downstream sectors are grouped together.

34



Figure 6. Cumulative impulse response along the supply chain
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Impulse-Response Along the Supply Chain We now use the innovations in downstream
value-added to estimate the impulse-responses of upstream sectors along each supply chain.
Since each supply chain involves many sectors, we group suppliers based on their supply chain
positions. Specifically, for each downstream consumer good j, we classify input suppliers (in-
dexed by i) into three groups according to terciles of our upstreamness/production delay mea-
sure ξij .15 To maintain consistency with our four-sector vertical supply chain example in Section
3.2.2, we number groups in decreasing order of upstreamness: the most upstream suppliers are
assigned to group g = 1, while suppliers closest to the downstream sector belong to group g = 3.
We refer to the 25 downstream sectors themselves as group g = 4. Note that since the same
sector can supply multiple downstream goods, it may occupy different positions and thus belong
to different groups across various supply chains.

We estimate the impulse-response of sectors along the supply chain to innovations in down-
stream value-added using the following specification:

V Aup,g
i,t+h − V Aup,g

i,t−1 = βh,g
∑

i∈Uj

wijrjt + δh,g
∑

i∈Uj

wijrjt × Pj + Zg
it + ϵit, (32)

with controls Zg
it ∈








∑

i∈Uj

wijV Adown
j,t−s, V Aup,g

i,t−s





p

s=1

, µi, µt



 .

15Appendix Figure A.6 shows the estimated impulse response functions by separating suppliers into four groups
according to quartiles of upstreamness.
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That is, we project the revenue of each sector along the supply chain of downstream consumption
good j onto value-added innovations rjt, estimating group-specific coefficients βh,g and δh,g for
each time h after the shock.16 Because an upstream sector i may supply multiple downstream
goods j, we aggregate the downstream innovations using weights proportional to each sector’s
input usage intensity: wij = Lij × std(V Aj,t)/αj

std(V Ai,t)/αi
. The term Lij is the ij-th entry of the IO table’s

Leontief-inverse, representing the importance of supplier i for producing good j. The ratio of
standard deviations and value-added intensities adjust for the fact that both the downstream in-
novations rjt and the upstream outcome variables are standardized in the regression. We exclude
four commodity sectors (c.f. footnote 13) because they serve as broadly upstream suppliers across
many different supply chains.

We plot the coefficients βh,g and βh,g + δh,g across time h for different supply chain groups
g ∈ {3, 2, 1} in the remaining panels (b)–(d) of Figure 6. The estimate βh,g, shown in the solid
lines, represents the impulse response functions at horizon h for upstream group g’s value-added
when they situate along the supply chain for a downstream sector j with a relatively small hump-
shaped AR(2) component (i.e., with the dummy Pj turned off). The estimate βh,g+δh,g, shown in
the dashed lines, represents the impulse response functions at horizon h for upstream group g’s
value-added when they situate along the supply chain for a downstream sector j with a relatively
large hump-shaped AR(2) component (i.e., with the dummy Pj turned on).

The heterogeneity in the impulse response functions provide a sharp empirical test of our
theory. Our estimated impulse response functions are consistent with all four of our theory’s
key predictions under incomplete information. First, downstream sectors (group g = 4) where
AR(2) shocks dominate (dashed line in panel a) exhibit a distinctly hump-shaped response in
their own value-added following demand shocks. Second, the value-added response along the
supply chain is also hump-shaped and initially amplified as shocks propagate upstream, gener-
ating pronounced volatility: the response is amplified from the downstream sectors in Figure 6
to group g = 3 in Figure 6, and is further amplified in group g = 2. Third, this amplification di-
minishes in sectors located further upstream (group g = 1). Fourth—and most importantly—the
downstream hump-shaped responses and upstream amplification effects are markedly stronger
in sectors where AR(2) shocks dominate, while such patterns are weak or absent in sectors char-
acterized primarily by AR(1) shocks. Specifically, we observe a pronounced gap between the
impulse responses for AR(2)-dominant supply chains (dashed lines) and AR(1)-dominant supply
chains (solid lines). This gap initially widens and then gradually narrows over time; similarly,
moving upstream from downstream sectors (group g = 4) towards the most upstream suppliers
(group g = 1), the gap initially widens before eventually closing. These empirical results closely
align with our theoretical predictions.

16As a robustness check, in Appendix D.8 we replace the two lags of upstream value-added in the control variables
by ∆V Aup,g

i,t−1. This is a long-difference specification that could suppress small-sample bias (Jordà and Taylor, 2025).
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4.4 Quantitative Implications

In this section we estimate the demand shock process from the data, and we demonstrate the
quantitative importance of hump-shaped shocks in a time-to-build environment for explaining
sectoral fluctuations along the supply chain.

Estimation We assume (16) and (17) are the true data-generating process, and we estimate the
covariance matrices Σu and Σϵ for the two types of demand shocks as well as the persistence
parameter ρ.17 As we do not separately observe the two types of shocks, we estimate these three
objects η ≡ {Σu,Σϵ, ρ} following our derivation of the incomplete information case in Section
3.3. Specifically, based on the initial guess η0, we first run a Kalman filter on the panel data of
realized downstream value-added. We then estimate these three objects using maximum likeli-
hood, update the Kalman filter, and iterate until convergence. To ensure the covariance matrices
are positive semi-definite, we estimate them by performing Cholesky decompositions.18

We find ρ = 0.818. Figure 7 plots the correlation matrices—which are easier to visualize than
covariances—for hump-shaped shocks in panel (a) and for monotone-decay shocks in panel (b).
The figure shows that the demand shocks are not too correlated across sectors.19 Accordingly,
the Kalman gain matrix also has large diagonal entries. Table 2 reports the diagonal entries of
the Kalman gain matrix. A higher Kalman gain in sector i indicates that hump-shaped AR(2)
shocks are the more important driver for a downstream sector’s demand variation. We find that
“Aerospace Products and Parts”, “Soft Drinks and Ice”, “Apparel”, “Medical Equipment and Sup-
plies” and “Navigational/Measuring/Electromedical Instruments” are downstream sectors most
exposed to hump-shaped shocks.

Validation of the Structural Estimates against the Reduced-Form PACF Coefficients As
footnote 14 shows, there is a monotone mapping from the PACF lag 2 coefficient ϕi2 to the relative
importance of AR(2) shocks in a sector, (σu

i /σ
ϵ
i )

2. In the theoretical scenario where demand
shocks are independent across sectors, this relationship implies a monotonic mapping from ϕi2

to each sector’s Kalman gain κi (see Appendix A.6 for derivation).
Figure 8 plots both the theoretical relationship (blue curve, assuming independence of demand

shocks across sectors) and our empirical estimates of ϕi2 (red scatter points) against the corre-
sponding Kalman gains κi. Recall we empirically estimate ϕi2 from a reduced-form regression of
V Ait on V Ait−2, controlling for V Ait−1.

17In Appendix D.11 we re-do the exercises in this section allowing for separate persistent parameters for the
hump-shaped and monotone-decay shocks, following the derivations in Appendix B.2.

18In Appendix C, we document the details of MLE estimation.
19For the covariance matrices Σu and Σϵ, their diagonals explain 91% and 92% of the variation for hump-shaped

and monotone-decay shocks respectively, according to the Frobenius norm.
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Figure 7. Correlation matrices for hump-shaped and monotone-decay shocks
Panel (a): Correlation of Hump-Shaped Shocks
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Table 2. Estimation results: Kalman gains across downstream sectors

ρ = 0.818 κ

Tr
an

sp
ort

ati
on

Ship and Boat Building 0.18
Heavy Duty Trucks 0.22
Automobiles and Light Duty Motor Vehicles 0.26
Motor Vehicle Bodies and Trailers 0.57
Other Transportation Equipment 0.70
Aerospace Products and Parts 0.76

Fo
od

Pr
od

uc
ts

Fruit and Vegetable Preserving and Specialty Foods 0.07
Coffee and Tea 0.08
Sugar and Confectionery Products 0.30
Breweries 0.42
Other Food Except Coffee and Tea 0.46
Animal Slaughtering and Processing 0.59
Bakeries and Tortilla 0.68
Soft Drinks and Ice 0.76

Othe
r Fin

al
Goo

ds

Major Electrical Household Appliances 0.12
Office And Other Furniture 0.22
Carpet and Rug Mills 0.31
Tobacco 0.39
Newspaper Publishers 0.42
Soap, Cleaning Compounds, and Toilet Preparation 0.50
Periodical, Book, and Other Publishers 0.50
Pharmaceuticals and Medicines 0.50
Apparel 0.77
Medical Equipment and Supplies 0.83
Navigational/Measuring/Electromedical Instruments 0.98

Although demand shocks across sectors are not strictly independent, the cross-sector corre-
lations are relatively weak (c.f. Figure 7), with most variation coming from within-sector shocks.
The empirical scatter points generally align with the theoretical curve, validating our model spec-
ification. The small deviations observed may be attributed to these mild cross-sector dependen-
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cies in demand shocks. Appendix Figure A.1 further confirms that the relationship between our
empirical estimates of the PACF lag 1 coefficients ϕi1 and the Kalman gains also aligns with the
theoretical prediction.

Figure 8. Relationship between Kalman gain and partial autocorrelation function

The impulse-response exercises in Section 4.3 are done by sorting downstream sectors into
those with above- and below-median PACF lag 2 coefficients. In Appendix D.3, we show the
estimated impulse response functions are robust to sorting sectors by their Kalman gains.

Variance Decompositions The source of the bullwhip effect—that downstream demand shocks
create amplified volatility in upstream sectors—are the hump-shaped AR(2) shocks to consumer
demand. How quantitatively important are AR(2) shocks for supply chain volatility as a whole?
To answer this, we conduct variance decompositions following equation (28) in Proposition 4.
That equation implies that the volatility of demand for downstream goods, V art

(
θ̃t+1

)
, con-

sists of three components: the hump-shaped AR(2) demand shocks, the monotone-decay AR(1)
shocks, and forecast error of the hidden states. Accordingly, for each upstream sector j along the
supply chain of a downstream consumer good i, we compute sector j’s total volatility attributable
to each of the three components of the demand volatility in good i. Then, for each downstream
sector i, we calculate the average share of volatility across sectors along i’s supply chain that is
attributable to each of the three components.

Figure 9 shows the decomposition results. Each bar represents a downstream sector and has
three portions that add up to one. The blue portion captures the supply chain volatility associated
with the downstream sector’s hump-shaped shocks. The red portion captures the supply chain
volatility associated with the downstream sector’s monotone-decay shocks. The green portion
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captures the supply chain volatility associated with the forecast error associated with not observ-
ing the hidden state. The downstream sectors are arranged in increasing order of their Kalman
gains (i.e., the diagonals of the Kalman gain matrix), meaning that hump-shaped shocks tend to
play a larger role in sectors towards the right-hand side.

Across supply chains in the US economy, hump-shaped AR(2) shocks account for 47.6% of
volatility on average. The fraction ranges from 9.2% on the lower end (for the supply chain
associated with “Coffee and Tea”) to 92.2% on the higher end (for the supply chain associated with
“Navigational/Measuring/Electromedical/Control Instruments”). The volatility due to incomplete
information—the green portions—is small across all supply chains.20

Figure 9. Variance decompositions along supply chains
Variance Decomposition of Sectors that are Upstream to the 25 Sectors
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Counterfactuals We now compute several counterfactuals based on the estimated model to
demonstrate the importance of hump-shaped shocks and the time-to-build dynamics in generat-
ing supply chain volatility.

In the first set of counterfactuals, we hold constant the downstream demand volatilityV art
(
θ̃t+1

)
,

change the composition of demand shocks, and investigate the corresponding changes in the
volatility of supply chains associated with broad groups of downstream sectors.

Column (1) of Table 3 shows the change in supply chain volatility when the volatility of a
group of downstream sectors arises entirely from hump-shaped shocks. Specifically, consider

20Going from sectors on the left-hand side to those on the right, the green portions first increase and then decrease.
This is because the forecast errors are greatest for intermediate levels of Kalman gain, i.e., when both types of demand
shocks are important.
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row (a) in Table 3 labeled “Transportation”, which represents a group of downstream industries
that belong to the broader transportation sector. For each industry j along the supply chains
for the transportation sector, we compute V̂ art (γ̃j,t+1) by first setting the non-transportation
entries of V art

(
θ̃t+1

)
to zero and then plugging it into equation equation (29). The resulting

measure V̂ art (γ̃j,t+1) is the volatility of sector j attributable to demand volatility in the trans-
portation sector given the Kalman gains based on our empirical estimates. We then compute the
alternative measure V̂ ar

AR(2)

t (γ̃j,t+1) by setting K = I when using equation (29). This mea-
sure V̂ ar

AR(2)

t (γ̃j,t+1) captures the counterfactual volatility in sector j that arises from AR(2)
demand shocks to the transportation sector, while holding constant the levels of demand volatil-
ity in transportation. Column (1) of Table 3 then reports the ratio V̂ ar

AR(2)

t (γ̃j,t+1) /V̂ art (γ̃j,t+1)

averaged across all sectors j along the supply chains of the corresponding downstream groups.
We find that hump-shaped AR(2) shocks significantly amplifies sectoral volatility: for supply

chains associated with transportation sectors, the volatility increases by 145.7%. The amplifica-
tion is notably larger for transportation-related sectors compared to food products or other final
goods, partly because transportation sectors have longer supply chains delays, as demonstrated
in columns (5) and (6). These columns report the average delay and the average delay among the
top five longest delays along supply chains corresponding to each downstream sector. When de-
mand shocks in all downstream sectors become hump-shaped, the overall supply chain volatility
in the economy increases by 59.8% (row d, column 2).

Column (2) of Table 3 conducts an analogous exercise: we turn off hump-shaped shocks—
setting the Kalman gain matrix K to zero, thereby ensuring that demand volatility is driven
entirely by monotone-decay shocks—while holding downstream demand volatility constant. We
then examine the implied changes in supply chain volatility associated with particular down-
stream industry groups. In this scenario, supply chain volatility declines by more than 69% across
all downstream groups compared to the baseline.

Column (3) of Table 3 computes the implied supply chain volatility in a static model relative
to our dynamic model, again holding demand volatility constant. Specifically, we use the for-
mula V arStatict

(
γ̃t+1

)
= (I −Ω)−1 V art

(
θ̃t+1

)
(I −Ω′)−1, which follows from relationship

between sectoral revenue γ and demand θ in Acemoglu et al. (2012), given by γ = (I −Ω)−1 θ.
We find that a static model without time-to-build dynamics significantly understates the sup-
ply chain volatility attributable to downstream demand shocks—by more than 25.4% overall.
The understatement is particularly pronounced (exceeding 50%) among the downstream group
“Other Final Goods”, which includes “Apparel”, “Carpet and Rug Mills”, “Office And Other Furni-
ture”, “Office And Other Furniture”, “Tobacco”, “Medical Equipment and Supplies” and “Naviga-
tional/Measuring/Electromedical Instruments”, “Newspaper Publishers”, “Soap, Cleaning Com-
pounds, and Toilet Preparation”, “Periodical, Book, and Other Publishers” and “Pharmaceuticals
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and Medicines”.
In Appendix Table A.3, we report the outcomes for the same set counterfactual exercises,

except that we examine each downstream industry individually rather than in groups.

Table 3. Counterfactual change in supply chain volatility based on the nature of downstream
demand shocks

% Change in supply chain volatility Delays along supply chain

Only AR(2)
shocks

Only AR(1)
shocks

Static
model

Average Top 5

Downstream Group (1) (2) (3) (5) (6)

(a) Transportation 145.73 -71.05 -25.38 2.32 3.84
(b) Food Products 83.06 -69.09 -37.66 2.14 3.31
(c) Other Final Goods 42.42 -77.12 -53.06 2.04 3.03
(d) All Sectors 59.82 -69.08 -42.67 2.14 3.31

5 Conclusion

We develop a framework to analyze dynamic interactions over production networks, with two
main ingredients: sectoral demand shocks and heterogeneous time-to-build delays. Each pro-
ducer’s input choices depend on expectations of future demand all time horizons, arising from
both exogenous consumer demand shocks and endogenous responses from other producers along
the supply chain, each potentially facing distinct time-to-build delays. The model highlights how
the bullwhip effect emerges when current demand shocks generate amplified expectations of
future demand. We characterize the solution in closed form over primitives and show how equi-
librium input decisions depend on the entire temporal structure of shocks and supply-chain link-
ages. Empirically and quantitatively, we show that the bullwhip is significant across downstream
sectors that are important for final consumption.
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A Proofs

A.1 Proof of Theorem 1

Proof. We iteratively substitute the left-hand side of (9) into the right-hand side to obtain

γt = θt +
∞∑

d=1

βdΩdEt [γt+d]

= θt + Et

[ ∞∑

d=1

βdΩd

(
θt+d +

∞∑

d′=1

βd′Ωd′γt+d+d′

)]

...

= θt + βΩ1Et [θt+1] + β2
(
Ω2

1 +Ω2

)
Et [θt+2]

+β3
(
Ω3

1 +Ω2Ω1 +Ω1Ω2 +Ω3

)
Et [θt+3] + · · ·

= θt +
∞∑

s=1

GsEt [θt+s] , (A1)

where Gs ≡ βs
∑

ϕ∈Φs

∏
ϕj∈ϕ Ωϕj

. Note that the proof of Corollary 1 below implies that I +
∑∞

s=1Gs =
(
I −∑∞

d=1 β
dΩd

)−1, where invertibility is implied by
[∑∞

d=0 β
dΩd

]
ji
≤ Ωji,

∑
j Ωji ≤

1, and that I −Ω is invertible (see footnote 1). This and the fact that demand is mean-reverting
in the long-run (i.e., lims→∞ Et [θt+s] = θ̄ exists) directly imply that the infinite series in (A1)
always converge.

A.2 Proof of Corollary 1

Proof. Let G∞ ≡ I +
∑∞

s=1Gs. To show G∞ =
(
I −∑∞

d=1 β
dΩd

)−1, note

G∞ = I + βΩ1G∞ + β2Ω2G∞ + · · · = I +

( ∞∑

d=0

βdΩd

)
G∞.

Rearranging yields the result. Note that the invertibility of
(
I −∑∞

d=0 β
dΩd

)
follows from the

invertibility of I −Ω and that for all entries,
[∑∞

d=0 β
dΩd

]
ji
≤ Ωji.

A.3 Proof of Proposition 2

Proof. We start from taking logs of the production function (2):

ln yit = ln zit + αi ln ℓit +
∑

j

ωij lnmij,t−dij

We obtain (15) by substituting out mijt

yjt
and ℓjt

ℓ̄t
using (8), and we obtain (14) by summing (5) across

j and substitute out wt using (6).
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A.4 Proof of Theorem 2

Proof. Equation (19) and Theorem 1 jointly imply that

γ̃t = θ̃t +
∞∑

s=1

Gs

(
ρs
(
θ̃t − x̃t

)
+ (s+ 1) ρsx̃t

)
.

Let γ̃t = Gϵ
∞

(
θ̃t − x̃t

)
+Gx

∞x̃t. The matrixGϵ
∞ summarizes the impact of demand’s monotone-

decay component on revenue, and Gx
∞ captures the impact of the persistent component. We

derive these two components separately.
To derive Gϵ

∞, we can follow the same logic as in the proof for Proposition 1 and decom-
pose the impact of demand’s monotone-decay component recursively as the direct and indirect
network effects, where each round of the network effect is summarized by Gϵ

∞, discounted to
the presented by both the discount rate (β) and also the rate at which the shock dissipates (ρ).
Specifically, note

Gϵ
∞ = I + ρβΩ1 + (ρβ)2

(
Ω2

1 +Ω2

)
+ (ρβ)3

(
Ω3

1 +Ω1Ω2 +Ω2Ω1 +Ω3

)
+ · · ·

= I + ρβΩ1G
ϵ
∞ + (ρβ)2Ω2G

ϵ
∞ + · · ·

= I +

( ∞∑

d=1

(ρβ)d Ωd

)
Gϵ

∞,

and re-arranging yields the that Gϵ
∞ =

(
I −∑∞

d=1 (ρβ)
d Ωd

)−1

.

It is slightly more involved to derive Gx
∞ because the impact of a persistent shock does not

decay monotonically; instead, the impact has an arithmetically increasing component as well as
an exponentially decaying component. We can write Gx

∞ as

Gx
∞ = I + 2ρβΩ1 + 3 (ρβ)2

(
Ω2

1 +Ω2

)
+ 4 (ρβ)3

(
Ω3

1 +Ω1Ω2 +Ω2Ω1 +Ω3

)
+ · · ·

1. The first term I captures the impact of the persistent component x̃ on time-t revenue
through concurrent demand.

2. The second term 2ρβΩ1 captures the impact of x̃t on time-t revenue through expected
demand at t + 1. The impact of x̃ on t + 1 demand is captured by 2ρ. The impact of t + 1

demand on time-t revenue goes through input-output linkages with one-period delay and
is captured by Ω1.

3. The third term 3 (ρβ)2 (Ω2
1 +Ω2) captures the impact of x̃t on time-t revenue through

expected demand at t+ 2. The impact of x̃ on t+ 2 demand is captured by 3ρ2. The t+ 2

demand on time-t revenue goes through input-output linkages with two periods delay and
is captured by Ω2

1 + Ω2. The term Ω2
1 captures the linkages from inputs supplied by the

focal sector to the sector experiencing the demand shock through another intermediate
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producer, with two walks in total and one-period delay along each walk. The term Ω2

captures the linkages from the focal sector directly to the sector experiencing the demand
shock, with one walk of two periods delay.

Each successive term in Gx
∞ summarizes the impact of x̃t on time-t revenue through demand at

a future time t+ s, accounting for all possible direct and indirect network linkages with a delay
of s periods in total. To derive Gx

∞ in closed-form, we re-write it recursively.
Define Z ≡∑∞

d=1 d (ρβ)
d Ωd. We can then write Gx

∞ as

Gx
∞ = I + ρβΩ1

(
2I + 3ρβΩ1 + 4 (ρβ)2

(
Ω2

1 +Ω2

)
+ · · ·

)

+(ρβ)2Ω2

(
3I + 4ρβΩ1 + 5 (ρβ)2

(
Ω2

1 +Ω2

)
+ · · ·

)

+(ρβ)3Ω3

(
4I + 5ρβΩ1 + 6 (ρβ)2

(
Ω2

1 +Ω2

)
+ · · ·

)

= I + ρβΩ1 (G
ϵ
∞ +Gx

∞) + (ρβ)2Ω2 (2G
ϵ
∞ +Gx

∞) + (ρβ)3Ω3 (3G
ϵ
∞ +Gx

∞) + · · ·

= I +ZGϵ
∞ +

∞∑

d=1

(ρβ)d ΩdG
x
∞

=

(
I −

∞∑

d=1

(ρβ)d Ωd

)−1

(I +ZGϵ
∞)

= Gϵ
∞ +Gϵ

∞ZGϵ
∞

To derive the impulse-response, equation (18) implies that

∂θ̃t+s

/
∂ϵt = ρs, ∂x̃t+s

/
∂ϵt = 0,

∂θ̃t+s

/
∂ut = (s+ 1) ρs, and ∂x̃t+s

/
∂ϵt = ρs.

Hence
∂γ̃t+s

∂ϵt
= Gϵ

∞
∂θ̃t+s

∂ϵt
= ρsGϵ

∞,

∂γ̃t+s

∂ut

= Gϵ
∞
∂θ̃t+s

∂ut

+ (Gx
∞ −Gϵ

∞)
∂x̃t+s

∂ut

= (s+ 1) ρsGϵ
∞ + ρsGϵ

∞

(
d

∞∑

d=1

(ρβ)d Ωd

)
Gϵ

∞, as desired.

A.5 Proof of Proposition 3

Proof. Equation (20) implies that
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V art
(
γ̃t+1

)
= V art

(
Gϵ

∞

(
θ̃t+1 − xt+1

)
+Gx

∞xt+1

)

= V art

(
Gϵ

∞

(
ρθ̃t + ϵt+1

)
+Gx

∞ut+1

)

= Gϵ
∞Σϵ

tG
ϵ′

∞ +Gx
∞Σu

tG
x′

∞, as desired.

A.6 Derivation of Kalman Gains and PACF Coefficients

We observe θ̃t, and the state variables are θ̃t and xt. We write down the measurement equation
and state equation:

St ≡
[

θ̃t

xt

]
=

[
ρI ρI

0 ρI

]

︸ ︷︷ ︸
≡M

St−1 +

[
I I

0 I

]

︸ ︷︷ ︸
≡G

[
ϵt

ut

]

θ̃t =
[
I 0

]

︸ ︷︷ ︸
≡H′

St

Updating equation:
St|t = MSt−1|t−1 + Pt

(
θ̃t −H ′MSt−1|t−1

)
,

where
Pt = Σt|t−1H

(
H ′Σt|t−1H

)−1

and the conditional variance terms evolve according to

Σt|t = (I − PtH
′)Σt|t−1

Σt+1|t = MΣt|tM
′ +GQG′

where Q =

[
Σϵ 0

0 Σu

]
. As t→ ∞, Pt, Σt|t, and Σt+1|t converge to:

P ≡ lim
t→∞

Pt = Σ̂H
(
H ′Σ̂H

)−1

,

Σ ≡ lim
t→∞

Σt|t = (I − PH ′) Σ̂,

Σ̂ ≡ lim
t→∞

Σt+1|t = MΣ̂M ′ +GQG′.

We know that matrices Σ and P must take the form Σ =

[
0 0

0 F

]
and P =

[
I

K

]
, where F

is the variance for the nowcast and K is the Kalman gain. Substituting these forms into P , Σ,
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and Σ̂ enables us to derive F and K:[
0 0

0 F

]
= Σ = (I − PH ′) Σ̂ =

[
0 0

−K I

]
Σ̂

Σ̂ = ρ2

[
I I

0 I

][
0 0

0 F

][
I 0

I I

]
+

[
I I

0 I

][
Σϵ 0

0 Σu

][
I 0

I I

]

= ρ2

[
F F

F F

]
+

[
Σϵ +Σu Σu

Σu Σu

]

=

[
Σϵ + ρ2F +Σu ρ2F +Σu

ρ2F +Σu ρ2F +Σu

]

Substitute out Σ̂ from the right-hand side of Σ to get
[

0 0

0 F

]
=

[
0 0

−K I

][
Σϵ + ρ2F +Σu ρ2F +Σu

ρ2F +Σu ρ2F +Σu

]

which implies

F = (I −K)
(
ρ2F + Σu

)
= Σϵ

(
Σϵ + ρ2F +Σu

)−1
(ρ2F +Σu).

The form of P enables us to obtain the Kalman gain matrix:
[

I

K

]
= P = Σ̂H

(
H ′Σ̂H

)−1

=

[
I

(ρ2F +Σu) (Σϵ + ρ2F +Σu)
−1

]

which implies

K = (ρ2F +Σu)
(
Σϵ + ρ2F +Σu

)−1
,

as desired.
In the theoretical scenario where demand shocks are independent across sectors, each sector’s

Kalman gain κi simplifies to:

κi =
−
(
1 + (σu

i /σ
ϵ
i )

2 − ρ2
)
+

√(
1 + (σu

i /σ
ϵ
i )

2 − ρ2
)2

+ 4ρ2 (σu
i /σ

ϵ
i )

2

2ρ2

Hence, there is a monotone mapping from Kalman gain κi to the relative importance of AR(2)
shocks in each sector, (σu

i /σ
ϵ
i )

2.
We next derive the PACF coefficients at lags 1 and 2. According to the Durbin–Levinson

Algorithm,

ϕi,1 = Corr (θit, θit−1) = ρ+

ρ

(1−ρ2)2
(σu

i /σ
ϵ
i )

2

1+ρ2

(1−ρ2)3
(σu

i /σ
ϵ
i )

2 + 1
1−ρ2

,
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ϕi,2 = Corr (θit, θit−2|θit−1) (A2)

=
Corr (θit, θit−2)− ϕ2

i,1

1− ϕ2
i,1

(A3)

=


ρ2 +

2ρ2

(1−ρ2)2
(σu

i /σ
ϵ
i )

2

1+ρ2

(1−ρ2)3
(σu

i /σ
ϵ
i )

2 + 1
(1−ρ2)

− ϕ2
i,1



/
(
1− ϕ2

i,1

)
. (A4)

Figure A.1 plots both the theoretical relationship (blue curve, assuming independence of de-
mand shocks across sectors) and our empirical estimates of PACF at lag 1 (ϕi1, red scatter points)
against the corresponding estimated Kalman gains κi.

Figure A.1. PACF and Kalman gain

A.7 Proof of Theorem 3

Proof. Equation (25) states that

x̂t = ρx̂t−1 +K
(
θ̃t − ρ

(
θ̃t−1 + x̂t−1

))

Hence,

Et

[
θ̃t+s

]
= ρsθ̃t + sρsx̂t
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The demand innovation at time t is defined as

vt ≡ θ̃t − Et−1

[
θ̃t

]
= θ̃t − ρ

(
θ̃t−1 + x̂t−1

)

We have
Et−1

[
θ̃t+s

]
= ρs+1

(
θ̃t−1 + x̂t−1

)
+ sρs+1x̂t−1

Et

[
θ̃t+s

]
= ρsθ̃t + sρsx̂t

= ρs
(
Et−1

[
θ̃t

]
+ vt

)
+ sρs (ρx̂t−1 +Kvt)

Et [xt+s] = ρsx̂t = ρs+1x̂t−1 + ρsKvt

Hence
∂Et

[
θ̃t+s

]

∂vt

= ρsI + sρsK,
∂Et [xt+s]

∂vt

= ρsK.

Since
Et

[
γ̃t+s

]
= Gϵ

∞

(
Et

[
θ̃t+s

]
− Et [x̃t+s]

)
+Gx

∞Et [x̃t+s]

We have

∂Et

[
γ̃t+s

]

∂vt

= Gϵ
∞



∂Et

[
θ̃t+s

]

∂vt
− ∂Et [xt+s]

∂vt


+Gx

∞
∂Et [xt+s]

∂vt

= Gϵ
∞ (ρsI + sρsK − ρsK) +Gx

∞ρ
sK

= ρsGϵ
∞ (I + (s− 1)K) +Gx

∞ρ
sK,

as desired.

A.8 Proof of Proposition 4

Proof. Under incomplete information,

Et

[
θ̃t+s

]
= ρsθ̃t + sρsx̂t

Substitute this into equation (A1) and follow the same derivation as in the proof of Theorem 2,
we get that under incomplete information,

γ̃t = Gϵ
∞

(
θ̃t − x̂t

)
+Gx

∞x̂t.

Hence,

V art
(
γ̃t+1

)
= V art

(
Gϵ

∞

(
θ̃t+1 − x̂t+1

)
+Gx

∞x̂t+1

)
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Since θ̃t+1 = ρθ̃t + ρxt + ut+1 + ϵt+1, x̂t+1 = ρx̂t +K
(
θ̃t+1 − ρ

(
θ̃t + x̂t

))
and V art (xt) =

ρ2F , we have:

V art
(
γ̃t+1

)
= V art

(
Gϵ

∞ (ρxt + ut+1 + ϵt+1 −Kρxt −Kut+1 −Kϵt+1)

+Gx
∞ (Kρxt +Kut+1 +Kϵt+1)

)

= (Gϵ
∞ −Gϵ

∞K +Gx
∞K)

(
ρ2F +Σϵ +Σu

)
(Gϵ

∞ −Gϵ
∞K +Gx

∞K)
′
, as desired.

B Theoretical Results not in the Main Text

B.1 Decentralizing the Planner’s Solution as the Competitive Equilib-
rium

We now set up the competitive equilibrium to decentralize the planner’s solution, and we show
that the Lagrange multipliers in the planner’s solution indeed correspond to prices.

Consumer Problem At each time t, the consumer solves

Wt (at) = max
{cit,ℓ̄t}

∑

i

θit ln cit − v
(
ℓ̄t
)
+ βEt [Wt+1 (at+1)]

subject to the budget constraint
∑

i

pitcit + at+1/Rt = wtℓ̄t + at +Πt,

where Rt is the interest rate, at is savings in terms of a numeraire bond in zero net supply, pit is
the price of good i, wt is the wage rate, and Πt is the firm profits. We choose the numeraire good
so that the marginal utility of income in any period t (i.e., the Lagrange multiplier on the budget
constraint in each period) is always equal to one. Given the normalization, the intra-temporal
Euler equation is

θit = pitcit, (A5)

and the inter-temporal Euler equation is

1 = βRt.
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Producer Problem The representative producer in sector i solves

Vit

(
{mijt−q}q

)
= max

ℓit,{mijt}
pityit − wtℓit −

∑

j

pjtmijt + Et

[
Λt,t+1Vit+1

(
{mijt+1−q}q

)]

max
mijt

Et

[∑

s

Λt,t+s max
ℓit+s

(pit+syit+s − wt+sℓit+s)− pjtmijt

]

where Λt,t+s is the stochastic discount factor. Note that given log-linear utility, the stochastic
discount factor is equal to Λt,t+s = βs in all states—across all realizations of the productivity or
demand shocks. Specifically, Λt,t+s = βs θi,t+scitpit

θitci,t+spi,t+s
for all i, which simplifies to βs given (A5).

Planner’s Lagrange Multipliers By comparing the equilibrium conditions with the planner’s
solution, it is evident that the planner’s Lagrange multipliers coincide with equilibrium prices.

Remark on the Choice of Numeraire and Our Characterization The object γt in the plan-
ner’s solution coincides with the vector of sectoral revenues in the decentralized equilibrium with
the marginal utility of income normalized to one in each period. This normalization is equiva-
lent to choosing a numeraire in each period and is therefore inconsequential for analyzing the
relative revenue across sectors at each time (i.e., γit/γjt). The real interest rate is 1/β and is
also invariant to the choice of numeraire. Theorem 1 further implies that the relative sectoral
revenue is invariant to the labor supply function v (·) and sectoral productivities. The labor sup-
ply function and sectoral productivities affect quantities—-as analyzed in section 2.2—-but they
do not affect relative revenue across sectors. The property also holds in static production net-
work models with log-linear preferences and production functions (Acemoglu et al. 2012) as well
as in dynamic production network models with log-linear adjustment costs (Liu and Tsyvinski
2024). Our analysis here establishes this property in a dynamic production network model with
heterogeneous time-to-build.

B.2 Heterogeneous Rates of Convergence for Demand Shock Compo-
nents

Our analysis thus far has focused on the case where both the monotone-decay and hump-shaped
components of demand shocks have the same parameter ρ capturing the rate of convergence.
In this section, we generalize our results in section 3 to the case where the two demand shock
components have heterogeneous rates of convergence.

Specifically, we extend the demand shock process described by equations (16) and (17) as
follows:
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θit − θ̄i = ρϵ
(
θit−1 − θ̄i

)
+ xit + ϵit, (A6)

xit = ρxxi,t−1 + uit. (A7)

where ρϵ defines the rate at which demand reverts back to the steady-state under monotone-
decay shocks and ρx defines the rate of convergence under hump-shaped shocks. The previous
case is nested when ρϵ = ρx = ρ.

The expected future demand can be then determined as

Et

[
θ̃t+s

]
= ρsϵ

(
θ̃t − x̃t

)
+
ρs+1
ϵ − ρs+1

x

ρϵ − ρx
x̃t

which generalizes equation (19) of the baseline model to the case of heterogenous persistence.
We now generalize Theorems 2 and Proposition 3 to this setting.

Proposition 5. Under complete information, with demand characterized by equations (A6) and
(A7), sectoral revenue at time t is given by

γ̃t = Gϵ
∞

(
θ̃t − x̃t

)
+Gx

∞x̃t, (A8)

where Gϵ
∞ determines the impact of demand’s monotone-decay component on revenue, and Gx

∞
determines the impact of demand’s hump-shaped component, and

Gϵ
∞ ≡

(
I −

∞∑

d=1

(ρϵβ)
d Ωd

)−1

, Gx
∞ ≡ ρϵ

ρϵ − ρx
Gϵ

∞ − ρx
ρϵ − ρx

(
I −

∞∑

d=1

(ρxβ)
d Ωd

)−1

.

The impulse-response functions are:

∂Et [γ̃t+s]

∂ϵt
= ρsϵG

ϵ
∞,

∂Et [γ̃t+s]

∂ut

= Gϵ
∞
ρs+1
ϵ − ρs+1

x

ρϵ − ρx
+ (Gx

∞ −Gϵ
∞) ρsx.

The revenue volatility under complete information is V art
(
γ̃t+1

)
= Gϵ

∞Σϵ
tG

ϵ′
∞ +Gx

∞Σu
tG

x′
∞.

The revenue volatility under incomplete information is

V art
(
γ̃t+1

)
= (Gϵ

∞ −Gϵ
∞K +Gx

∞K)
(
ρ2xF +Σϵ +Σu

)
(Gϵ

∞ −Gϵ
∞K +Gx

∞K)
′
. (A9)

Proof. The expected future demand can be determined as

Et

[
θ̃t+s

]
= ρsϵ

(
θ̃t − x̃t

)
+
ρs+1
ϵ − ρs+1

x

ρϵ − ρx
x̃t (A10)

To derive Gϵ
∞, we can follow the same logic as in the proof for Proposition 1 and decom-

pose the impact of demand’s monotone-decay component recursively as the direct and indirect
network effects, where each round of the network effect is summarized by Gϵ

∞, discounted to
the presented by both the discount rate (β) and also the rate at which the shock dissipates (ρϵ).
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Specifically, note

Gϵ
∞ = I + ρϵβΩ1 + (ρϵβ)

2 (Ω2
1 +Ω2

)
+ (ρϵβ)

3 (Ω3
1 +Ω1Ω2 +Ω2Ω1 +Ω3

)
+ · · ·

= I + ρϵβΩ1G
ϵ
∞ + (ρϵβ)

2Ω2G
ϵ
∞ + · · ·

= I +

( ∞∑

d=1

(ρϵβ)
d Ωd

)
Gϵ

∞,

To derive Gx
∞ in closed-form, we re-write it recursively.

Gx
∞ = I +

ρ2ϵ − ρ2x
ρϵ − ρx

βΩ1 +
ρ3ϵ − ρ3x
ρϵ − ρx

β2
(
Ω2

1 +Ω2

)
+
ρ4ϵ − ρ4x
ρϵ − ρx

β3
(
Ω3

1 +Ω1Ω2 +Ω2Ω1 +Ω3

)
+ · · ·

=
ρϵ

ρϵ − ρx

[
I + ρϵβΩ1 + (ρϵβ)

2 (Ω2
1 +Ω2

)
+ (ρϵβ)

3 (Ω3
1 +Ω1Ω2 +Ω2Ω1 +Ω3

)
+ · · ·

]

− ρx
ρϵ − ρx

[
I + ρxβΩ1 + (ρxβ)

2 (Ω2
1 +Ω2

)
+ (ρxβ)

3 (Ω3
1 +Ω1Ω2 +Ω2Ω1 +Ω3

)
+ · · ·

]

=
ρϵ

ρϵ − ρx

(
I −

∞∑

d=1

(ρϵβ)
dΩd

)−1

− ρx
ρϵ − ρx

(
I −

∞∑

d=1

(ρxβ)
d Ωd

)−1

To derive the impulse-response, equation A10 implies that
∂Et [θi,t+s]

∂ϵit
= ρsϵ

∂Et [θi,t+s]

∂uit
=
ρs+1
ϵ − ρs+1

x

ρϵ − ρx

Hence
∂Et [γ̃t+s]

∂ϵt
= ρsϵ

(
I −

∞∑

d=1

(ρϵβ)
d Ωd

)−1

∂Et [γ̃t+s]

∂ut

=

(
I −

∞∑

d=1

(ρϵβ)
d Ωd

)−1
ρs+1
ϵ − ρs+1

x

ρϵ − ρx

+
ρx

ρϵ − ρx



(
I −

∞∑

d=1

(ρϵβ)
d Ωd

)−1

−
(
I −

∞∑

d=1

(ρxβ)
d Ωd

)−1

 ρsx as desired.

Hence, under complete information,

V art
(
γ̃t+1

)
= Gϵ

∞Σϵ
tG

ϵ′

∞ +Gx
∞Σu

tG
x′

∞

Under incomplete information,

V art
(
γ̃t+1

)
= (Gϵ

∞ −Gϵ
∞K +Gx

∞K)
(
ρ2xF +Σϵ +Σu

)
(Gϵ

∞ −Gϵ
∞K +Gx

∞K)
′
, as desired.
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C MLE Algorithm Details

To estimate the covariance matrices Σϵ and Σu, and the persistent parameter ρ, we integrate a
Kalman filter into a maximum likelihood estimator (MLE). First, we specify two lower triangular
matrices Lϵ and Lu with positive diagonal entries and parametrize the covariance matrices as
Σϵ = Lϵ (Lϵ)⊤, Σu = Lu (Lu)⊤. This Cholesky decomposition ensures that the covariance
matrices are positive semi-definite.

First, based on the initial guess of parameters, we run the Kalman filter to compute the log-
likelihood of the observed data, θ̃t, given the model parameters. We next maximize the log-
likelihood with respect to Σϵ, Σu and ρ. We then use the parameter estimates to update the
Kalman filter, and iterate until convergence.

The log-likelihood function, assuming a joint normal distribution, is given by:

f =
1

2π
√

|Wt|
exp

(
−1

2
v′
tW

−1
t vt

)
,

and the log-likelihood function is given by:

L
(
{θt}Tt=1;Σ

ϵ,Σu, ρ
)
= −1

2

T∑

t=1

(
log |Wt|+ v′

tW
−1
t vt

)
,

where θ̃t|t−1 = H ′MSt−1|t−1 is the forecast, vt = θt − θt|t−1 is the the forecast error, Wt =

H ′Σt|t−1H is the variance of forecast error, with H , M , St−1|t−1, and Σt|t−1 as defined in Ap-
pendix Section A.6.

We initialize the Kalman filter with a diffused prior, which places zero weight (up to machine
precision) on the initial forecast (θ0|−1). Our results are also robust to initializing the Kalman
with the long-run variance of the forecast error.

Practically, we implement this algorithm by using the python library
“statsmodels.api.tsa.statespace.MLEModel”, with the initialization option set to “approximate_diffuse”,
and we minimize the negative log likelihood function using ’L-BFGS-B’ method. We set both the
function tolerance and the gradient tolerance to 1e-6.

D Alternative Empirical Specifications and Robustness Checks

In this section, we conduct several alternative specifications and robustness checks to comple-
ment our empirical results in the main text.
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D.1 Higher Volatility in Upstream Sectors Across Supply Chains

Figure 5 in the main text shows the relationship between upstreamness, as measured by supply
chain delays, and volatility, along the sector-specific supply chain for 9 of the 25 downstream
sectors. Appendix Figure A.2 shows the relationship for the remaining 16 downstream sectors.
Appendix Figure A.3 reproduces the main text figure after dropping the four commodity sectors
(“Oil and Gas extraction”, “Coal mining”, “Copper, Nickel, Lead, and Zinc Mining”, and “Iron,
Gold, Silver and Other Metal Ore Mining”).
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Figure A.2. Along supply chains, upstream sectors exhibit higher volatility
(supply chains for downstream sectors not shown in the main text)
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Figure A.3. Along supply chains, upstream sectors exhibit higher volatility
(dropping commodity sectors)
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D.2 Downstream Sector’s Own Impulse-Response: Pooled Specification

Figure 6 panel (a) in the main text shows the impulse-response of downstream value-added to its
own innovations. Downstream sectors in that figure are classified into two groups according to
whether a sector has a dominant AR(2) component. Appendix Figure A.4 reproduces the impulse-
response by pooling all 25 downstream sectors together. The figure demonstrates a hump-shaped
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pattern.

Figure A.4. Downstream sector’s own impulse-response: pooled specification
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D.3 Classifying Downstream Sectors by Kalman Gains

Figure 6 in the main text shows the estimated impulse response functions when downstream
sectors (and the associated supply chains) are classified by their PACF lag 2 coefficients. Appendix
Figure A.5 shows that our results are robust to classifying downstream sectors according to the
diagonals of the estimated Kalman gains. Specifically, we estimate the following local projection
regressions:

V Adown
j,t+h − V Adown

j,t−1 = αh
0rjt + αh

1rjt ×Kj +Xjt + ζjt, (A11)

with controls Xjt ∈
{{
V Adown

j,t−s

}p
s=1

, µj, µt

}
.

V Aup,g
i,t+h − V Aup,g

i,t−1 = βh,g
∑

i∈Uj

wijrjt + δh,g
∑

i∈Uj

wijrjt ×Kj + Zg
it + ϵit, (A12)

with controls Zg
it =








∑

i∈Uj

wijV A
down
j,t−s , V A

up,g
i,t−s





p

s=1

, µi, µt



 .

whereKj is a dummy variable if j-th diagonal Kalman gain is above the median among 25 down-
stream sectors.
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Figure A.5. Cumulative impulse response along the supply chain
(classifying downstream sectors by their Kalman gains)
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D.4 Supply Chains Categorized into Four Upstream Groups

Panels (b)–(d) of Figure 6 in the main text show the estimated impulse response functions when
the supply chain associated with each downstream consumer good is separated into three groups
according to terciles of our production delay measure ξij . Appendix Figure A.6 shows the esti-
mated impulse response functions by separating suppliers into four groups according to quartiles
of ξij . To maintain consistency with our four-sector vertical supply chain example in section
3.2.2, we number groups in decreasing order of upstreamness: the most upstream suppliers are
assigned to group g = 1, while suppliers closest to the downstream sector belong to group g = 4

(implicitly but not shown in the figure, the 25 downstream sectors themselves are designated as
group g = 5). The figure shows that our results are robust to this alternative categorization.
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Figure A.6. Cumulative impulse response along the supply chain (with four upstream groups)
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D.5 Alternative Measures of Time-to-Build

Figure 6 in the main text show the estimated impulse response functions when supply chain
delays are based on the backlog-ratio for each input, i.e., the ratio between the stock value of
unfilled orders and the flow value of goods delivered (Liu and Tsyvinski, 2024). The strategy
yields a supplier-specific measure of delay.

In this Appendix we re-estimate the impulse-response functions using two alternative strate-
gies to measure delays. The first alternative strategy follows Antràs and Tubdenov (2025) and
infers an input-buyer-specific measure of time-to-build based on the ratio between the value of
inventories and cost of goods sold (COGS) using the COMPUSTAT data. Because this measure
captures the average production period but not shipping delays, we round up the delay measures
when converting from months to quarters. Appendix Figure A.7 shows the results.

The second alternative strategy specifies the total time-to-build delay from an input producer
j to input user i is the sum of the backlog ratio of good j and the inventory-to-COGS ratio of
good i. Appendix Figure A.8 shows the results.

Our main results remain robust across these alternative measures of time-to-build.
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Figure A.7. Cumulative impulse response along the supply chain
(average production period as the time-to-build measure)
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Figure A.8. Cumulative impulse response along the supply chain
(sum of the backlog-ratio and average production period as the time-to-build measure)
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D.6 Using Alternative Parameters to Construct Supply Chain Distance

Figure 6 in the main text show the estimated impulse response functions when the supply chain
distance ξij are calculated according to (23) while setting ρ = β = 1. Appendix Figure A.9
reproduces the result using the realistic quarterly discount factor β = 0.98 and the rate of decay
parameter ρ = 0.818 estimated from the data to construct our delay measure. Our results are
robust to this change.

Appendix Figure A.10 further shows the correlation (Y-axis) between ξij calculated using spe-
cific values of ρβ (shown on the X-axis) and that calculated using ρβ = 1. The figure shows that
the bilateral delay measure ξij remains highly correlated across a wide range of ρβ.

Figure A.9. Cumulative impulse response along the supply chain (β = 0.98, ρ = 0.818)
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Figure A.10. Correlation between ξij under different values of ρβ and the baseline measure
(ρβ = 1)
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D.7 Using Alternative Numbers of Lags When Estimating Impulse-Response
Functions

Figure 6 in the main text show the estimated impulse response functions when we use p = 2

lags in the regression that extracts downstream value-added innovations (equation 30). In this
Appendix we reproduce the impulse-response functions when we use alternative numbers of lags.
For each specification, the number of lags p in the control variables for regression equations (31)
and (32) are adjusted accordingly.

Appendix Figure A.11 shows the results for p = 1. Appendix Figure A.12 shows the results
for p = 3.
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Figure A.11. Cumulative impulse response along the supply chain (p = 1 lags)
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Figure A.12. Cumulative impulse response along the supply chain (p = 3 lags)
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D.8 Impulse-Response Using Long Difference Specification

Appendix Figure A.13 reproduces the estimated impulse-response functions when using the fol-
lowing specification:

V Aup,g
i,t+h − V Aup,g

i,t−1 = βh,g
∑

i∈Uj

wijrjt + δh,g
∑

i∈Uj

wijrjt × Pj + Zg
it + ϵit, (A13)

with controls Zg
it ∈








∑

i∈Uj

wijV A
down
j,t−s





p

s=1

,∆V Aup,g
i,t−1, µi, µt



 .

We include ∆V Aup,g
i,t−1 in our control instead of two lags of upstream value added. This is long

difference specification could suppress small-sample bias (Jordà and Taylor, 2025).

Figure A.13. Cumulative impulse response along the supply chain (long difference
specification)

-.5

0

1

2

Va
lu

e 
ad

de
d

0 2 4 6 8
Quarter

Panel (a): Group 4 (25 downstream sectors)

-1

0

1

2

3

U
ps

tre
am

 v
al

ue
 a

dd
ed

0 2 4 6 8
Quarter

Panel (b): Group 3 along the supply chain

0

5

10

U
ps

tre
am

 v
al

ue
 a

dd
ed

0 2 4 6 8
Quarter

Panel (c): Group 2 along the supply chain

-10

-5

0

5

U
ps

tre
am

 v
al

ue
 a

dd
ed

0 2 4 6 8
Quarter

Panel (d): Group 1 along the supply chain

PACF at lag 2 below median PACF at lag 2 above median 

D.9 Impulse-Response with Monthly Data

Figure 6 in the main text show the estimated impulse response functions using quarterly data.
Appendix Figure A.14 reproduces the results using monthly data.
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Figure A.14. Cumulative impulse response along the supply chain (monthly data)
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D.10 Controlling for Productivity Shocks

The impulse-response functions estimated in the main text are based on extracted innovations
to downstream value-added. Although in our theoretical framework, fluctuations in value-added
(i.e., revenue multiplied by sectoral value-added intensity) originate exclusively from demand
shocks—since productivity shocks have offsetting effects on prices and quantities—our empiri-
cally testable predictions directly concern fluctuations in sectoral value-added.

In this Appendix section, we conduct the following robustness check to control for sector-
specific cost shocks. Specifically, we solve a generalized model with constant-elasticity-of-substitution
(CES) production functions with one-period delays, linearize it around a steady-state, and derive
separate implications of cost shocks and demand shocks.

Consider consumer preferences

V (St) = E




∞∑

s=t

βs−t


ln

(∑

i

θ
1/η
it c

η−1
η

it

) η
η−1

− v
(
ℓ̄s
)

 |St




with production functions

yit = zitℓ
αi
it

(
N∑

k=1

λ
1
ξ

jkm
ξ−1
ξ

jk,t−djk

) ξ
ξ−1

(1−αi)

.

Here, η is the elasticity of substitution across goods for the consumer, ξ is the elasticity of sub-
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stitution across intermediate inputs for producers, λjk parametrizes input-output relationships
(with

∑
k λjk = 1), and θit again parametrizes consumer demand.

For simplicity, we solve this CES model assuming all inputs take one period to build, djk = 1

for all j, k.
Following our derivations in the main text, we can show that

pktmjkt = β (1− αj)Et [γjt+1]
λjkp

1−ξ
kt∑

i λjip
1−ξ
it

,

where γjt ≡ pjtyjt is sectoral revenue as in the main text. That is, (1− αj)Et [γjt+1] is the
total expenditure by producer j on intermediate inputs at time t, and λjkp

1−ξ
kt∑

i λjip
1−ξ
it

is the fraction of
intermediate input expenditure spent on input k.

Substitute mjkt into the production function and then log-linearize around the steady-state
(using ·̃ to denote log-deviation from the steady-state) we obtain:

p̃jt = (1− αj) (γ̃jt − Et−1 [γ̃jt])− z̃jt + αjw̃t +
∑

j

ωjk [ξp̃kt−1 + (1− ξ) p̃jt−1] , (A14)

where ωjk is the steady-state share cost expenditure by sector j on intermediate input k.
Equation (A14) enables us to extract productivity shocks from the data on prices. To get

data on prices, we first divide value-added (IP data) by value-added intensity (IO data) to recover
revenue, which is then divided by sectoral quantities (IP data).

We then use the following procedure based on equation (A14) to extract productivity shocks.

1. We residualize ln γjt with respect information available up to time t − 1. Specifically, we
regress ln γjt on the first two principle components of all sectoral value-added at time {t−
s}s=1,...4 and the first two principle components of all sectoral prices at time {t− s}s=1,...4.
The residual from this regression is our measure of the innovation, γ̃jt − Et−1 [γ̃jt].

2. We multiply the innovation obtained in the previous step by (1− αj) and subtract the
resulting product from ln pjt.

3. Finally, we residualize the outcome of the previous step with respect to information avail-
able up to time t− 1, to obtain residual Sjt = −z̃jt + αjw̃t − Et−1 [−z̃jt + αjw̃t].

Sjt is our measure of cost shocks; it captures the innovation in sectoral unit costs arising from
productivity and labor—specifically, variations in unit costs not driven by changes in intermediate
input prices.

We re-estimate our local projections as follows:

V Adown
i,t+h − V Adown

i,t−1 = αh
0rit + αh

1rit × Pi +Xit + ζit, (A15)

with controls Xit ∈
{{
V Adown

i,t−s

}p
s=1

, Sit, µi, µt

}
.
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V Aup,g
i,t+h − V Aup,g

i,t−1 = βh,g
∑

i∈Uj

wijrjt + δh,g
∑

i∈Uj

wijrjt × Pj + Zg
it + ϵit, (A16)

with controls Zg
it ∈








∑

i∈Uj

wijV A
down
j,t−s , V A

up,g
i,t−s





p

s=1

,
∑

i∈Uj

wijSjt, Sit, µi, µt



 .

Figure A.15 shows the estimated impulse response functions under this specification.

Figure A.15. Cumulative impulse response along the supply chain (controlling for cost shocks)
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D.11 Quantitative Implications Given Heterogeneous Rates of Conver-
gence

Section 4.4 in the main text conducts estimation and quantification based on the baseline model
where both hump-shaped and monotone-decay shocks share a common persistence parameter ρ.
In this Appendix we reproduce the analysis but allow for the two types of shocks to have different
persistence parameters, based on our derivations in Section B.2. Following the MLE procedure
described in Appendix Section C, we find ρϵ = 0.667 and ρx = 0.928. Table A.1 reports the
diagonal entries of the Kalman gain matrix. This set of Kalman gains exhibits a correlation of
0.99 with the ones presented in Table 2 in the main text. Figure A.16 reproduces the variance
decomposition results. Table A.2 reproduces the counterfactual exercises.
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Table A.1. Estimation results: Kalman gains across downstream sectors (shock-specific
persistence)

κ

Tr
an

sp
ort

ati
on

Ship and Boat Building 0.27
Heavy Duty Trucks 0.28
Automobiles and Light Duty Motor Vehicles 0.29
Motor Vehicle Bodies and Trailers 0.68
Other Transportation Equipment 0.79
Aerospace Products and Parts 0.79

Fo
od

Pr
od

uc
ts

Fruit and Vegetable Preserving and Specialty Foods 0.09
Coffee and Tea 0.11
Sugar and Confectionery Products 0.35
Breweries 0.51
Other Food Except Coffee and Tea 0.53
Animal Slaughtering and Processing 0.66
Bakeries and Tortilla 0.77
Soft Drinks and Ice 0.77

Othe
r Fin

al
Goo

ds

Major Electrical Household Appliances 0.11
Office And Other Furniture 0.33
Carpet and Rug Mills 0.34
Newspaper Publishers 0.44
Tobacco 0.49
Periodical, Book, and Other Publishers 0.54
Pharmaceuticals and Medicines 0.56
Soap, Cleaning Compounds, and Toilet Preparation 0.59
Apparel 0.83
Medical Equipment and Supplies 0.86
Navigational/Measuring/Electromedical Instruments 0.98
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Figure A.16. Variance decomposition along supply chains (shock-specific persistence)
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Table A.2. Counterfactual change in supply chain volatility based on the nature of downstream
demand shocks (shock-specific persistence)

% Change in supply chain volatility Delays along supply chain

Only AR(2)
shocks

Only AR(1)
shocks

Static
model

Average Top 5

Downstream Group (1) (2) (3) (5) (6)

(a) Transportation 154.50 -82.79 -17.66 4.30 8.90
(b) Food Products 91.34 -77.97 -31.25 3.82 6.99
(c) Other Final Goods 39.45 -85.95 -51.04 3.58 6.11
(d) All Sectors 57.07 -77.58 -40.32 3.83 7.06

D.12 Counterfactuals Each Downstream Industry Individually

In Appendix Table A.3, we report the outcomes for the same set counterfactual exercises as in
Table 3 of the main text, except that we examine each downstream industry individually rather
than in groups.
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Table A.3. Counterfactual change in supply chain volatility based on the nature of downstream
demand shocks

% Change in supply chain volatility Delays along supply chain

Only AR(2)
shocks

Only AR(1)
shocks

Static
model

Average Top 5

Downstream Sector (1) (2) (3) (4) (5)

Apparel 40.02 -83.03 -57.47 2.18 3.35
Tobacco 181.66 -67.12 -16.94 2.06 2.60
Coffee and Tea 634.78 -25.18 108.95 2.12 3.12
Soft Drinks and Ice 41.25 -83.24 -57.74 2.14 3.47
Breweries 165.79 -69.79 -21.89 2.12 3.30
Carpet and Rug Mills 260.11 -61.93 6.61 2.21 3.41
Newspaper Publishers 161.96 -68.51 -21.43 2.04 2.94
Sugar and Confectionery Products 240.68 -58.50 2.60 1.95 2.96
Fruit and Vegetable Preserving 617.82 -22.62 109.32 2.02 3.27
Animal Slaughtering and Processing 102.51 -84.11 -44.28 2.77 3.89
Bakeries and Tortilla 59.16 -79.85 -51.49 2.02 3.31
Other Food Except Coffee and Tea 137.74 -69.77 -27.79 1.95 3.12
Pharmaceuticals and Medicines 120.85 -73.74 -33.01 1.99 2.31
Soap, Cleaning Compounds 117.40 -71.10 -33.02 1.83 2.58
Navigational Instruments 3.30 -86.38 -67.88 1.98 3.38
Major Electrical Appliances 480.26 -33.48 71.17 1.97 3.36
Automobiles and Light Duty Vehicles 326.57 -58.98 21.63 2.36 3.99
Heavy Duty Trucks 414.88 -57.88 48.24 2.61 4.15
Motor Vehicle Bodies and Trailers 94.46 -76.94 -41.11 2.15 4.03
Aerospace Products and Parts 43.78 -85.43 -52.95 2.33 3.68
Ship and Boat Building 409.20 -46.67 51.99 2.15 3.54
Other Transportation Equipment 60.26 -84.13 -50.11 2.34 3.64
Office And Other Furniture 303.88 -48.34 23.05 1.87 3.25
Medical Equipment and Supplies 26.35 -83.78 -60.38 1.96 2.96
Periodical, Book Publishers 131.93 -76.03 -32.50 2.35 3.16
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