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1 Introduction

How to foster innovation has long been a central question for economists and policy makers.
The discussion has focused on the amount of resources invested in research and development
(R&D) and the cost of under- or over-investment. But given R&D resources, how should they
be allocated across various economic sectors or technological fields? This question is important,
policy relevant, yet understudied, and it is the focus of this paper. Intuitively, allocating resources
to any specific sector likely improves innovation and production within that sector. However,
perhaps equally importantly, a key feature of innovation is that the technological progress in any
focal sector may have long-term impacts on other sectors’ future innovations through knowledge
spillovers. Consequently, the cross-sector R&D allocation must carefully trade off these effects.

We ask: How should innovation resources be optimally allocated across sectors to take advan-
tage of cross-sector knowledge spillovers and achieve long-term growth? For example, howmany
resources should an economy devote to R&D in semiconductors relative to consumer electronics,
or chemistry relative to pharmaceutics? How should the optimal R&D allocations differ across
countries? How are R&D resources allocated across sectors in the real world, and how much gain
does it create to improve cross-sector R&D allocative efficiency?

We answer these questions both theoretically and empirically. The key novelty of our theo-
retical approach is that we introduce a network perspective into modeling the dynamic spillover
structure of innovation. This network allows us to capture the notion that one sector’s innova-
tion activities require researchers and scientists to build on prior discoveries and knowledge, often
from outside their own fields or sectors. We solve for the optimal cross-sector allocation of R&D
resources and derive model-implied sufficient statistics that can assess the allocative efficiency of
R&D in real-world economies. The model is applied to data onmore than 30 million global patents
from all major economies to assess innovation resource (mis)allocation and potential welfare gains
from improving allocative efficiency.

This research has two key motivations. First, cross-sector R&D allocation is an important
aspect of many R&D policies, ranging from industrial policies that aim to identify and stimulate
a certain set of innovative sectors, to science policy seeking to advance science and harvest long-
term value. Second, the cross-sector innovation spillover structure presents a unique opportunity
to combine classic endogenous growth theory, recent advances in network methods, and detailed
global patent data to answer the research question.

We embed an innovation network into an otherwise canonical multisector endogenous growth
model. A finite amount of R&D resources (i.e., scientists) may be deployed across sectors to inno-
vate and improve product quality. One sector’s past innovations may subsequently, over a long
time path, benefit other sectors’ future innovation activities by helping scientists in those sectors
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innovate more productively. We define the innovation network as the weighted directed graph
capturing how one sector’s innovation activity benefits from another’s past innovation. The state
variables of the economy are sectoral knowledge stocks, which reflect the accumulation of past
innovations in each sector. Through dynamic spillovers across the network, the state variables
form a dynamical system, in which the evolution of the knowledge stock in each sector depends
endogenously on the entire history of resource allocation across all sectors of the economy. The
key decision of interest is how to efficiently allocate R&D resources across sectors in the network.

We begin by modeling a closed economy. Our baseline setup adopts an analytically tractable
formulation, where cross-sector knowledge spillovers form a log-linear dynamical system. De-
spite the complexity of dynamic network spillovers, we are able to explicitly solve for the optimal
path of cross-sector R&D resource allocation under this formulation and express the closed-form
solution in terms of consumer preferences across sectoral products and sectoral importance in
stimulating future innovation through the innovation network. This solution is intuitive; it ac-
counts for: (i) the direct effect of R&D on sectoral output, and (ii) indirect network effects on
other sectors through R&D spillovers, discounting benefits that occur far in the future. The opti-
mal R&D allocation, which trades off the direct effect and long-term indirect effects, also relates
to the society’s effective discount rate for future spillovers (i.e., the ratio between the discount
rate for consumption and the speed at which knowledge spillovers materialize). A society valuing
long-term growth (i.e., with a low effective discount rate) should allocate more resources toward
sectors with fundamental technologies that are central in the innovation network, such as semi-
conductors. These are technologies that can generate widespread and long-lasting knowledge
spillovers to many other sectors. By contrast, a short-termist society should allocate more R&D
resources toward sectors that immediately benefit consumers but may be peripheral in the inno-
vation network.

Formally, the contribution of each sector’s R&D to economic growth is captured by the in-
novation network’s eigenvector centrality, which we call “innovation centrality”. We show the
innovation centrality vector coincides with the growth-maximizing R&D allocation along a bal-
anced growth path. The optimal R&D allocation chosen by a benevolent planner can be written
as a weighted average between the innovation centrality vector and the vector representing con-
sumer preferences over different goods. The former represents the planner’s incentives to take
advantage of knowledge spillovers for future growth, and the latter represents the planner’s incen-
tives to expand knowledge in ways that directly benefit the consumer. A patient planner valuing
long-term growth would place a higher weight on the former.

The model also allows us to quantitatively evaluate the cross-sector allocation of R&D re-
sources in the data and calculate the potential welfare gains from adopting the optimal R&D allo-
cations. In consumption-equivalent terms, the welfare gains are proportional (in logs) to the inner
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product between the optimal R&D allocation vector and the log difference between the optimal
and the actual R&D allocation vectors. Hence, this inner product—also known as the relative en-
tropy of the actual R&D allocation from the optimal allocation—is a sufficient statistic to evaluate
the potential welfare gains from improving of R&D allocation. This sufficient statistic can be cal-
culated using data on sectoral production, the innovation network, and real-world R&D resource
allocation, allowing us to quantitatively assess the R&D allocative efficiency in the data.

Our baseline results are derived under the tractable formulation where the innovation net-
work is exogenous and invariant to R&D allocations or the levels of knowledge stock, so that the
cross-sector knowledge spillovers form a log-linear dynamical system. Under this formulation,
the optimal R&D allocation is time-invariant and holds along the entire transition path; the suf-
ficient statistic for the welfare gains from R&D reallocation also accounts for the gains along the
transition path.

This tractable log-linear benchmark may appear restrictive at first, but the insights are more
general. We show that, in a richer, non-linear environment with an endogenous innovation
network—where cross-sector spillovers depend on the levels of knowledge stock and thus past
R&D allocations—our welfare sufficient statistic is still valid to first-order around a balanced
growth path; formally, our sufficient statistic captures the directional (Gateaux) derivative of wel-
fare with respect to the allocation of R&D resources. Hence, even though the optimal R&D alloca-
tion does not have explicit analytic solutions in a non-linear environment, our sufficient statistic
can continue to be used to capture, as a first-order approximation around a balanced growth path,
the welfare gains from reallocating R&D resources; the welfare impact arising from the endoge-
nous changes in the network (due to departure from log-linearity) is second-order in nature.

We extend our model to incorporate an important source of cross-country heterogeneity:
knowledge spillovers from abroad. As we show, some countries, like the U.S. and Japan, rely
more on domestic knowledge spillovers and less on foreign knowledge spillovers, while other
economies benefit more from foreign spillovers particularly from the technologically advanced
ones. From the perspective of maximizing domestic welfare, an economy receiving relatively
more spillovers from abroad—and less domestically—should allocate less domestic R&D into the
network-central sectors. Similarly, when domestic R&Dmatters less for long-run spillovers, a less
efficient domestic R&D allocation is also less consequential for welfare. We demonstrate these in-
tuitions formally by deriving, in an economy receiving foreign spillovers, both (1) the unilaterally
optimal R&D allocations and (2) the sufficient statistics for the welfare gains of R&D reallocation.
The tractability of our model lends itself to a large number of other theoretical extensions, such as
incorporating a production network of input-output linkages alongside the innovation network.
We host several additional extensions in the Online Appendix.

Our empirical analysis starts by constructing a global innovation network from over 36 mil-
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lion patents and their citations, collected from over 40 major patent authorities around the world.
The data, obtained from Google Patents and originally based on the EPO worldwide bibliographic
(DOCDB) data, contain patent-level information on innovations that took place inmost economies
between 1976 and 2020. We construct the innovation network as a weighted directed graph using
sectors (and country-sectors in our open economy analysis) as nodes and citation shares from
one node to another as the edge. We find innovation centrality to be highly heterogeneous across
131 3-digit international technological classes (IPCs). A handful of IPCs—such as medical sci-
ence, computing, and semiconductors—are among the most central in the innovation network.
Countries vary widely regarding reliance on foreign spillovers: 70% of citations made by U.S.
patents are toward other U.S. patents, but most other economies—including China, South Korea,
and Germany—are foreign-reliant, with domestic citation shares well below 50%. Within each
country, the innovation network only weakly correlates with the input-output production net-
work, such that there is substantial independent variation in both network structures.

We provide evidence that our construction of the innovation network captures knowledge
spillovers. Specifically, we show that a sector’s innovation activities benefit from past innovation
in upstream sectors linked through the patent citation network by extending Acemoglu, Akcigit
and Kerr (2016)—which analyze the U.S. domestic innovation network—using instrumental vari-
ables (IVs) and to the global setting. The IVs for past innovation are constructed based on time-
varying sectoral exposure to tax-induced user cost of R&D (Wilson, 2009 and Thomson, 2017);
they isolate comovements in patent output driven by knowledge spillovers and not by common
shocks to connected sectors (Manski, 1993 and Bloom, Schankerman and Van Reenen, 2013). We
find evidence for directional knowledge spillovers: each sector’s innovation output responds only
to past upstream innovations and does not respond to past innovation from downstream sectors
even though they are also connected. We also show that relative to input-output linkages, the in-
novation network is a significantly stronger channel through which knowledge spillovers occur.

Our main empirical application connects the model-implied optimal R&D allocation with
cross-sector R&D allocation in the real world. For each country and time period, we calculate
the unilaterally optimal cross-sector R&D allocation. In the U.S., sectors highly ranked in the op-
timal allocation are primarily those central in the innovation network, such as medical science,
semiconductors, and computing devices. We find that the unilaterally optimal allocation differs
significantly across countries. For instance, relative to the U.S., Germany and Japan should op-
timally allocate more R&D resources to vehicle-related innovation, whereas South Korea should
invest more R&D in electric communication technique.

Themodel-implied optimal R&D allocation strongly predicts actual resource allocation in real-
world economies, suggesting that ourmodel provides a reasonable way to understand cross-sector
R&D allocation. Specifically, we compare the unilaterally optimal R&D allocation against the
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actual R&D allocation captured using both sectoral R&D expenditure shares and patent output
shares in the data. We find that, across many countries—especially for the most innovative ones—
sectors that should have more R&D resources do receive more resources.

Nevertheless, the residual misalignment between the optimal and actual allocations translates
into large potential welfare gains from the reallocation of R&D resources to each country’s own ef-
ficient benchmark. We find Japan has the most efficient R&D allocation. From the R&D allocation
in 2010, adopting the optimal allocation could lead to welfare improvements equivalent to raising
consumption by 5.64% at every point in time for Japan and 8.04% in the U.S., the two economies
that rely the most on domestic knowledge spillovers. Improving R&D allocation could lead to
welfare gain of 5.60% in China, 4.24% in South Korea, and 4.09% in Germany. These economies’
R&D allocations are less efficient than Japan’s, but their domestic R&D is less welfare consequen-
tial because they benefit more from foreign spillovers. These cross-country differences in R&D
allocative efficiency are qualitatively stable since the 2000s.

It is important to note that a more allocatively efficient economy is not necessarily more in-
novative in absolute terms. Instead, our notion of cross-sector allocative efficiency reflects the
distance from an economy’s actual R&D allocation in the data to this economy’s own first-best,
efficient benchmark. Also note that, by comparing the R&D allocations in the data to the first-
best, our notion of allocative efficiency does not require that we take a stance on firms’ equilibrium
conduct; instead, we can directly calculate the welfare impact of reallocating R&D based on the
economic environment. Finally, it is worth emphasizing again that our notion of allocative ef-
ficiency concerns the relative allocation of R&D resources across sectors and not the aggregate
level of R&D.

In the final part of the paper, we discuss over- and under-allocated technology classes in the
U.S. Even though providing a full policy recommendation is beyond the paper’s scope, the empir-
ical patterns are nevertheless illuminating and show our model’s potential to analyze and address
more detailed R&D policy issues. For example, our calculation shows that the technology class
most relevant to semiconductor technologies (H01) is under-allocated in the U.S. , providing sup-
port to the recent U.S. initiatives to accelerate and catalyze the domestic semiconductor sector.
We also find under-allocation of R&D in technology classes related to “green innovation” such as
waste and pollution management and alternative energy.

This study relates to several strands of existing work. First, our study contributes to a long
line of research on innovation and knowledge spillovers (Jones, 2009, Bloom et al., 2013, Lucking
et al., 2018, Jones and Summers, forthcoming, Jones, 2021), and innovation policy (Aghion et al.,
2005, Bloom et al., 2019, Hopenhayn and Squintani, 2021), particularly in the context of economic
growth (Jones and Williams, 1998, Ngai and Samaniego, 2011, Acemoglu et al., 2018, Akcigit and
Kerr, 2018, Atkeson and Burstein, 2019, Garcia-Macia et al., 2019, Bloom et al., 2020, Akcigit et
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al., 2021, Cai and Tian, 2021, Koenig et al., forthcoming, Akcigit et al., 2022). We contribute to
this literature by tackling a key open question: how to optimally allocate R&D resources across
sectors in the presence of an innovation network with cross-sector knowledge spillovers.

Relatedly, our study connects to the literature considering cross-sector knowledge linkages,
including Acemoglu et al. (2016), Cai and Li (2019), and Huang and Zenou (2020), and, in an open
economy setting, Cai et al. (2022) and Guillard et al. (2021); and cross-country knowledge diffu-
sion (Caballero and Jaffe, 1993, Jaffe et al., 1993, Eaton and Kortum, 1999, 2006, Coe and Helpman,
1995, Coe et al., 2009, Santacreu, 2015, Buera and Oberfield, 2020); see Keller (2004) and Melitz
and Redding (2021) for surveys and Berkes et al. (2022) for recent work that establishes causal-
ity of innovation spillovers on productivity. We contribute to this literature in three ways: first,
we build a new endogenous growth model explicitly considering the dynamic and cross-sector
spillovers of knowledge; second, our tractable formulation enables us to derive the social optimal
R&D allocation and provide simple sufficient statistics for the welfare gains of reallocating R&D
optimally, and we introduce foreign-dependence as an important heterogeneity in our open econ-
omy setting; third, we construct a global innovation network using patent data around the world,
which allows us to empirically study the R&D allocative efficiency in real-world economies.

We also contribute to the fast-growing literature that models network interactions in a gen-
eral equilibrium setting (Carvalho, 2010, Gabaix, 2011, Acemoglu et al., 2012, Jones, 2011, 2013,
Grassi, 2017, Acemoglu et al., 2015, Baqaee, 2018, Lim, 2018, Oberfield, 2018, Liu, 2019, Baqaee and
Farhi, 2019, 2020, Chaney, 2018, Taschereau-Dumouchel, 2020, Kleinman et al., 2022, vomLehn and
Winberry, 2022). Particularly related are recent papers on dynamic production networks—where
dynamics arise through input diffusion (Carvalho and Voigtlaender, 2015) or input adjustment
costs (Liu and Tsyvinski, 2022)—and studies on policy interventions targeting specific sectors in
static production and strategic networks (Liu, 2019, Galeotti et al., 2020). Relative to this literature,
our contribution is to embed an innovation network into a dynamic growth model and study the
optimal allocation of R&D resources.

Finally, we contribute to the large literature of resource (mis)allocation (Restuccia and Roger-
son, 2008, Hsieh and Klenow, 2009, Jones, 2013, David and Venkateswaran, 2019, Hsieh et al.,
2019, Liu, 2019, Baqaee and Farhi, 2020). While this literature focuses on the static misallocation
of production resources—potentially due to market distortions, such as taxes, markups and finan-
cial frictions—and primarily within-sector across firms, we study the cross-sector allocation of
innovation resources, so our analysis is inherently dynamic in nature. Also note that our alloca-
tive efficiency measure does not take a stand on firms’ equilibrium conduct and, instead, directly
calculates the welfare impact of reallocating R&D based on the economic environment.

The rest of the paper is structured as follows. Section 2 has the model and the theoretical
results. Section 3 introduces our data. Section 4 describes the global innovation network and
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provides evidence of its relevance for knowledge spillovers. Section 5 hosts our main empirical
application, where we use the model to evaluate cross-sector R&D allocations across countries
and time. Section 6 concludes. A separate Online Appendix contains the derivations of the results
in the paper, theoretical extensions, and supplementary materials on data and empirical results.

2 Theory: EndogenousGrowthwithAn InnovationNetwork

We set up the baseline model in Section 2.1 and analyze the optimal allocation of R&D resources
across sectors in Section 2.2. Section 2.3 shows how R&D allocation affects long-run growth along
the balance growth path. Section 2.4 shows how reallocating R&D resources affects welfare, taking
into account the transitional dynamics.

Our baseline model adopts a tractable log-linear formulation featuring an exogenous innova-
tion network with fixed cross-sector elasticities of knowledge spillovers. Section 2.5 shows that,
in a richer environment where the cross-sector elasticities of knowledge spillovers are endoge-
nous to past R&D, our sufficient statistic for how R&D allocation affects welfare is still valid to
first-order around a balanced growth path.

Section 2.6 extends the baseline model with knowledge spillovers from abroad. In this setting,
we derive the unilaterally optimal R&D allocation and the welfare impact of R&D reallocation.

The section ends with a number of theoretical extensions. We discuss how to incorporate
a production network (i.e., input-output linkages) into the model in Section 2.7.1. Section 2.7.2
discuss potential sources of allocative inefficiencies in a stylized decentralized setting. Section
2.7.3 briefly describes other extensions in the Online Appendix.

2.1 Economic Environment of the Baseline Model

Preferences and Production Technology There is a representative consumer with log flow
utility and exponential discounting at rate ρ:

Vt =
∫∞
t
e−ρ(s−t) ln ys ds. (1)

The consumption good at each time t is a Cobb-Douglas aggregator over sectoral goods {yit}Ki=1:

yt =
∏K

i=1y
βi
it ,

∑K
i=1βi = 1. (2)

We refer to βi as the consumption elasticity of sector i.
Each sectoral good i is produced linearly from production workers ℓit:

yit = qψitℓit. (3)

The sectoral productivity qψit depends on a sector’s knowledge stock qit at time t. The collection
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of sectoral knowledge stocks {qit}Ki=1 are the state variables of the economy. The exponent ψ
parametrizes how sectoral knowledge translates into sectoral productivity.

The Innovation Process R&D expands the knowledge stock. At time t, mass si of R&D re-
sources (e.g., scientists) employed in sector i generate a flow of new innovation nit:

nit = sitηiχit, χit ≡
∏K

j=1q
ωij
jt ,

∑K
j=1ωij ≡ 1. (4)

ηi is the exogenous component of innovation productivity, and χit is the endogenous component.
Importantly, χit is an aggregator over knowledge stock across all sectors. This implies that a
larger knowledge stock qj in sector j facilitates innovation production in sector i with elasticity
ωij , thereby making scientists in sector i conduct R&D more productively. Our formulation thus
captures cross-sector knowledge spillovers; that is, scientists stand on the shoulders of giants
across all sectors of the economy. In the baseline model we assume that χit has constant returns
to scale (

∑K
j=1 ωij = 1) in each sector, which implies sustained and nonexplosive growth. Absent

cross-sector knowledge spillovers, ωij = 1 if i = j and is zero otherwise.
New innovation nit expands the knowledge stock according to the following law of motion:

q̇it/qit = λ ln (nit/qit) . (5)

The key distinction between nit and qit is that the former is a flow variable reflecting innovation
output at time t, whereas the latter is a stock variable reflecting the accumulation of past innova-
tions. The rate at which knowledge expands in sector i is increasing in the flow of innovation and
decreasing in the existing knowledge stock qit, capturing the notion that innovation gets harder as
the knowledge stock in sector i expands. λ parametrizes the elasticity at which flow R&D expand
the knowledge stock. Because past knowledge affects future R&D efficiency, λ also relates to the
rate at which knowledge spillovers materialize.

Throughout the rest of the paper, we use boldface variables to denote column vectors (lower-
case) andmatrices (uppercase). Let qt denote the column vector whose i-th entry is qit; qt captures
the economy’s state variables.

Definition 1. (Innovation Network) The innovation network Ω ≡ [ωij] is the K ×K matrix
whose ij-th entry is ωij .

A key object of this study, the Ω matrix represents a weighted directed graph in which eco-
nomic sectors are the graph nodes. Elements of the Ω matrix ωij capture the elasticity to which
sector i’s innovation production benefits from sector j’s existing knowledge stock. We refer to
sector j as upstream to sector i and, conversely, i as downstream to j; this terminology captures
the notion that knowledge flows from upstream sector j to downstream sector i. Absent cross-
sector knowledge spillovers,Ω = I is the identity matrix. The construction is not limited by any
specific sector definition; for instance, innovation networks can be constructed across industrial
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sectors, technology classes, and scientific fields. To make the network analysis interesting, we
assume all sectors are strongly connected: every sector is eventually reachable from every other
sector via knowledge spillovers (i.e., ∀i, j, ∃k such that

[
Ωk
]
i,j
> 0).

Resources We close the model with resource constraints. The economy is endowed with two
exogenous stocks of resources: production workers of mass ℓ̄ and research scientists of mass s̄.
Workers are employed to produce sectoral goods as in (3). Scientists are employed to conduct
R&D. The market clearing conditions for production workers and scientists are:

∑K
i=1ℓit = ℓ̄,

∑K
i=1si = s̄. (6)

Remark. In the baseline model, we separate R&D and production resources for expositional sim-
plicity. As we show below, our results concerns the cross-sector allocation shares of R&D re-
sources (sit/s̄), and our characterization is invariant to the level of R&D resources s̄. Hence, all of
our results hold in a richer model with factor mobility between R&D and production (see Online
Appendix B.10).

2.2 Optimal Allocation of R&D Resources

In this section we characterize the optimal allocation of R&D resources in the economy. Consider
a benevolent social planner who chooses the entire time path of worker and scientist allocations
across sectors to maximize consumer utility. We can write the planner’s problem as

V ∗ ({qi0}) ≡ max
{ℓit,sit}

∫∞
0
e−ρt

∑K
i=1βi ln yit dt, (7)

subject to the sectoral production function (3) for yit, the flow of new innovation (4), law of motion
for sectoral knowledge (5), and the resource constraints (6).

First, recognize from equation (3) that the planner’s objective is log-linear in the allocation of
production workers, implying the following lemma.

Lemma 1. The planner allocates production workers in proportion to the consumption elasticity
vector β: for all t, ℓit = βiℓ̄ for each sector i and variety ν.

Lemma 1 simplifies the planner’s problem into choosing how to allocate scientists only. Recall
Ω ≡ [ωij] is the matrix that encodes the innovation network, and ln qt ≡ [ln qit]

K
i=1 is the vector

of log-knowledge stock at time t. Let γit ≡ sit/s̄ denote the share of scientists allocated to sector
i at time t, and let γt denote the vector [γit]Ki=1 that sums to one. Using equation (3) to express
consumption in terms of production worker allocation and then applying Lemma 1, we rewrite
the planner’s problem in vector form as

max
{γt} s.t. γ′

t1=1∀t
ψ ·
∫∞

0
e−ρtβ′ ln qt dt (8)
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s.t. d ln qt
/
dt = λ · (lnη + ln s̄+ lnγt + (Ω− I) ln qt) . (9)

We obtain (9) by substituting the innovation production function (4) into qt’s law of motion (5).
The planner’s problem may seem intractable: the economy features a vector of state vari-

ables (sectoral knowledge stocks), and the law of motion involves dynamic network spillovers
across sectors, meaning the allocation of R&D in any sector at any time affects the evolution of
all state variables in all future times. Our formulation, however, is especially tractable: both the
planner’s objective function (8) and the law of motion (9) are log-linear in the state variables qt.
Such tractability enables us to characterize the solution—the entire time path of optimal R&D
allocation—in closed form. Later in Section 2.5 we generalize our analysis to a nonlinear setting.

Proposition 1. Starting from any vector of initial knowledge stock q0, the optimal R&D allocation
is time-invariant and follows, along the entire time path,

γ ′ =
ρ

ρ+ λ
β′
(
I − Ω

1 + ρ/λ

)−1

. (10)

Proposition 1 shows the optimal cross-sector R&D allocation is time-invariant and follows
γ ′ ∝ β′

(
I − Ω

1+ρ/λ

)−1

; the proportionality constant, ρ
ρ+λ

, ensures that γ sums to one. To under-
stand the intuition for the result, note that another way to write the optimal allocation vector of
R&D resources γ ′ is:

γ ′ ∝ β′
∞∑

m=0

(
Ω

1 + ρ/λ

)m
= β′

(
I +

Ω

1 + ρ/λ
+

(
Ω

1 + ρ/λ

)2

+ · · ·
)
.

That is, the Leontief inverse
(
I − Ω

1+ρ/λ

)−1

in (10) can be written as a power series of Ω
1+ρ/λ

.
The first term in the infinite summation, β′I = β′, captures how each sector’s knowledge stock
directly impacts consumer welfare through product quality. This term coincides with the optimal
allocation of production workers (Lemma 1). The products between β′ and subsequent terms in
the power series capture the indirect effect of knowledge creation on consumer welfare, through
future innovations and product quality improvements in network-connected sectors. Innovations
in sector j benefit sector i by endogenously raising the efficiency of subsequent R&D in sector
i, captured by the aggregator χit in equation (4) with elasticity ωij , which is the ij-th entry of
the innovation network matrix Ω. Improved innovation efficiency in sector i further generates
additional knock-on effects, as new knowledge in sector i facilitates future innovations in all
sectors that benefit from sector i’s knowledge stock; the higher-powered terms in the infinite
summation capture these indirect effects.

Because network spillovers occur through sectoral knowledge stock, the flow of new knowl-
edge through current R&D activities can only affect innovative efficiency and product quality in
the future. Hence, the importance of network effects in the optimal R&D allocation is modulated
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by the discount rate ρ relative to λ. The former (ρ) captures discounting of the future, and the
latter (λ) captures how quickly those future benefits materialize. We refer to ρ/λ as the society’s
effective discount rate, which is a key parameter in determining optimal innovation allocation.
When ρ/λ is high, the planner discounts future benefits heavily, and the network effects play a
smaller role. In the limit as ρ/λ → ∞, the planner becomes myopic, and the optimal R&D al-
location is fully pinned down by the consumer preferences β. Conversely, a more patient (low
ρ/λ) planner allocates more R&D resources to sectors that benefit more sectors in the future, di-
rectly or indirectly. Proposition 1 implies that a patient planner directs R&D into basic science;
an impatient planner directs R&D into consumer goods that may be peripheral in the innovation
network, such as textiles and food products.1

2.3 R&D Allocation and Economic Growth

In this section we show how R&D allocation affects the economic growth rate along a balanced
growth path (BGP). We demonstrate that the network’s eigenvector centrality—what we call “in-
novation centrality”—is a sufficient statistic for evaluating the growth rate along a BGP and coin-
cides with the growth-maximizing R&D allocation. We show the socially optimal R&D allocation
γ converges to this growth-maximizing allocation when the planner is infinitely patient.

Definition 2. (Innovation Centrality) The vector of sectoral innovation centrality, a ≡ [ai]
K
i=1,

is the dominant left-eigenvector of the innovation network Ω with an associated eigenvalue of
one, satisfying a′ = a′Ω and

∑K
i=1 ai = 1.

Because Ω is an irreducible, row-stochastic matrix, the innovation centrality vector a exists
and is unique by the Perron-Frobenius theorem. We now show a is a key determinant of the BGP
growth rate and coincides with the growth-maximizing R&D allocation.

Let b denote a generic vector of allocation shares with nonnegative entries and
∑K

i=1 bi = 1.

Lemma 2. Consider a BGP in which the aggregate consumption grows at a constant rate, with time-
invariant allocations of production and R&D resources. Suppose R&D resources are allocated accord-
ing to the vector b (i.e., si/s̄ = bi); then, along the BGP, the growth rate of knowledge stock is the
same across sectors and equals to

gq (b) = constant+ λ · a′ ln b, (11)

where the right-hand side constant is λ · (ln s̄+ a′ lnη). The aggregate consumption growth rate is

gy (b) = ψ · gq (b) . (12)
1In Section B.1 of the Online Appendix, we provide an example with three sectors, and we analytically express

the optimal allocation based on network structure and effective discount rate ρ/λ.
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Lemma 2 analytically expresses the BGP growth rate of knowledge stock and the aggregate
consumption as functions of the R&D allocation, b. Along the BGP, the knowledge stock grows
at the same rate gq (b) across sectors. The endogenous component of gq (b) is λ times the inner
product between the innovation centrality (a) and the vector of log-R&D allocation shares (ln b)
(recall λ is the elasticity at which flow R&D expand the knowledge stock). The exogenous com-
ponent (the constant term) on the right-hand side of (11) shows that the growth rate is higher
when R&D resources are more abundant (higher s̄), when R&D leads to more new innovation
flows (higher η), and when a higher flow innovation (relative to the existing stock) leads to faster
knowledge growth (higher λ). Since ψ parametrizes how knowledge translates into productivity,
(c.f. equation 3), the growth rate of the aggregate consumption is simply ψ times the growth rate
of knowledge stock across sectors.

Corollary 1. The R&D allocation that maximizes the BGP consumption growth rate coincides with
the innovation centrality a, as it solves the following problem: a = argmaxb≥0 s.t. 1′b=1 a

′ ln b.

This corollary highlights that innovation centrality a coincides with the growth-maximizing
R&D allocation along a BGP. Intuitively, ai captures the extent to which sector i’s R&D activities
contribute to economic growth, taking into account the network effects. Sectors with higher
innovation centrality represent more fundamental technologies in the innovation network.

The corollary also demonstrates that the social planner does not necessarily choose the R&D
allocation that maximizes growth. Unlike the socially optimal allocation γ, which depends on the
effective discount rate ρ/λ, the growth-maximizing allocation is equal to the innovation centrality
and is independent of these parameters. Intuitively, the social planner maximizes the welfare
of the consumer, who may prefer better quality products in the near future from consumption-
intensive sectors (e.g., consumer goods such as textiles and food products), and knowledge in
these sectors may not generate much knowledge spillovers for future innovations.

One can rewrite the optimal R&D allocation vector γ as the solution to the following fixed
point equation, which demonstrates how γ varies with the effective discount rate ρ/λ:

ρ

λ
(γ ′ − β′) + γ ′ (I −Ω) = 0′. (13)

Equation (13) demonstrates that the optimal R&D allocation γ trades off between consumer pref-
erences β and long-run growth captured by the innovation centrality a, and ρ/λ modulates the
relative importance of these two terms. When ρ/λ is large—an impatient planner—consumer pref-
erences dominate (limρ/λ→∞ γ = β). The planner places more weight on growth as ρ/λ declines;
in the limit ρ/λ → 0, equation (13) implies that γ ′ (I −Ω) → 0′, thus the optimal allocation
converges to the growth maximizing allocation (limρ/λ→0 γ = a).

Proposition 2. As the planner becomes infinitely patient (ρ/λ → 0), the optimal R&D allocation
converges to the innovation centrality, which is the growth-maximizing allocation: limρ/λ→0 γ = a.
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As the planner becomes infinitely impatient (ρ/λ → ∞), the optimal R&D allocation converges to
the consumption elasticity vector: limρ/λ→∞ γ = β.

2.4 The Impact of R&D Allocation on Welfare

We now derive the welfare impact of R&D allocation, taking into account the transition dynamics.

Proposition 3. For any initial knowledge stock q0 and any path of worker allocation {ℓt}, the
difference in consumer welfare generated by two time-invariant R&D allocations b̃ and b is

V
(
q0; {ℓt} , b̃

)
− V (q0; {ℓt} , b) =

ψλ

ρ2
γ ′
(
ln b̃− ln b

)
. (14)

Proposition 3 shows that the welfare difference resulting from two R&D allocation vectors can
be expressed as the inner product between the optimal R&D allocation γ and the log-difference
in R&D allocation vectors, multiplied by the scalar ψλ/ρ2. The result holds for any time path
of worker allocation and any initial knowledge stock q0; hence, the Proposition can be used for
welfare evaluation of policy counterfactuals that reallocate R&D resources across sectors.

Definition 3. (Consumption-EquivalentWelfare Gains fromAdopting theOptimal R&D)
Consider an economy with time-invariant R&D allocation b and the associated consumption
path {yt}t≥0. The consumption-equivalent welfare gains from adopting the optimal R&D alloca-
tion γ, is the scalar L (b) such that the consumer is indifferent between the consumption path
{L (b)× yt}t≥0 and the consumption path generated by reallocating R&D optimally according to
the vector γ, while holding worker allocation unchanged.

The scalarL (b) quantifies the welfare impact of reallocating R&D resources from b to γ across
sectors. Note that, because the flow output is log-additive in the knowledge stock qt and worker
allocation ℓt (equation 3),L (b) does not depend on the path of worker allocation. We next provide
a simple formula for L (b).

Proposition 4. The consumption-equivalent welfare impact of adopting the optimal R&D is

L (b) = exp

(
ψλ

ρ
γ ′ (lnγ − ln b)

)
. (15)

Proposition 4 shows that the consumption-equivalent welfare impact of reallocating R&D
resources optimally, in logs, the inner product between the optimal allocation γ ′ and the log-
difference between the optimal and the actual allocations, (lnγ − ln b), multiplied by ψ, the elas-
ticity of productivity to knowledge stock, and λ/ρ, the inverse of the effective discount rate. The
inner product term, also known as the relative entropy, is a statistical distance measure of how b

differs from γ. Note that ρ/λ affects welfare through not only the proportionality constant but
also the optimal allocation γ (as in Proposition 1).
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2.5 General Functional Forms and Endogenous Innovation Network

The baseline model features an exogenous innovation network Ω, as the elasticities of each sec-
tor’s innovation productivity to another sector’s knowledge stock (ωij ≡ ∂ lnχit

∂ ln qjt
) are exogenous

structural parameters. The R&D technology (9) thus forms a log-linear dynamical system. Log-
linearity brings tractability: under this formulation, the optimal R&D allocation is time-invariant
and holds along the entire transition path; the sufficient statistic for thewelfare gains from changes
in the R&D allocation also accounts for the gains along the entire transition path.2

The log-linearity in the baseline model may appear restrictive at first, as it rules out the
possibility that degree of knowledge spillovers depend endogenously on the levels of sectoral
knowledge stock: as sector j accumulates knowledge qjt, its contribution for sector i’s innova-
tion (∂ lnχit

∂ ln qjt
) may rise or fall. Moreover, sector j’s importance for consumption ( ∂ ln yt

∂ ln yjt
) may also

change. Such nonlinearity can be incorporated by modeling the consumption and innovation
spillover elasticities (β and Ω) not as structural parameters but as objects that endogenously de-
pend on the levels of knowledge stock. In such a richer, nonlinear environment, the optimal R&D
allocation is no longer time-invariant; instead, it varies with the levels of knowledge stock across
sectors (and therefore depends also on the exogenous component ηi of each sector’s innovation
productivity).

While an analytic characterization of the global path of optimal R&D allocation is infeasible
away from loglinearity, we now show that in a nonlinear economic environment, our sufficient
statistic, defined using local elasticities, can still be used to measure the potential welfare impact
of reallocating R&D resources as a first-order local approximation around a balanced growth path
(BGP). The welfare impact arising from the endogenous changes in the consumption elasticities
or the network structure (due to departure from log-linearity) is second-order in nature.

Specifically, consider replacing the log-linear consumption aggregator yt =
∏K

i=1 y
βi
it in (2)

with a differentiable and constant-return-to-scale function yt = Y ({yit}), and suppose the law of
motion for sectoral knowledge stock follows

q̇it/qit = f̃ (sitXi ({qjt})) (16)

where f̃ (·) ≥ 0 is concave and differentiable; Xi (·) ≥ 0 is a differentiable R&D spillover function
that satisfies homogeneous-of-degree-zerowith positive cross-sector spillovers (∂ lnXi (·) /∂ ln qjt >
0 for i ̸= j). We assume the spillovers are bounded, andwithout loss of generality we set the bound
to one (|∂ lnXi (·) /∂ ln qjt| ≤ 1∀i, j).

In this environment, consumer welfare given the path of R&D allocation {bit ≡ sit/s̄} is
∫∞

0
e−ρt lnY

({
qψitℓit

})
dt, s.t. d ln qit/ dt = f (ln (bits̄Xi ({qjt}))) ∀i, (17)

2Prior literature has used log-linear adjustment costs to obtain tractability in the context of capital investments
(see Hercowitz and Sampson, 1991, Abel, 2003).
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where f (·) ≡ f̃ (exp (·)), and ℓit is the mass of workers allocated to sector i. We can define

βit ≡
∂ lnY ({yit})

∂ ln yit
; ωijt ≡





∂ lnχi({qkt})
∂ ln qjt

if i ̸= j,

1 +
∂ lnχi({qjt})

∂ ln qit
if i = j;

λit ≡
∂f (ln (bits̄Xi ({qjt})))

∂ ln bit
.

βit is the consumption elasticity; ωijt is the innovation spillover elasticity; λit parametrizes the rate
at which R&D create knowledge. These elasticities are not structural parameters; instead, they
are equilibrium objects evaluated at specific levels of allocation and knowledge stock. Precisely
because these elasticities change endogenously, the optimal R&D allocation is no longer time-
invariant and instead depends on the levels of knowledge stock across sectors.

Proposition 3 in the baseline model extends to this nonlinear environment locally around a
BGP (which is not necessarily the optimal one), where the allocations of worker and R&D re-
sources are time invariant, and qit grows at the same rate across all sectors. In a BGP, the local
elasticities are all time-invariant; λit = λ is furthermore common across sectors. Hence, we can
define γ ′ ∝ β′

(
I − Ω

1+ρ/λ

)−1

and scale its entries so that
∑

i γi = 1. In this nonlinear environ-
ment, the vector γ no longer represents the globally optimal R&D allocation (as in the baseline
model); instead, it locally captures how R&D allocation affects welfare, as shown in the following
result.

Proposition 5. Consider an economy in a balanced growth path with R&D allocation b. To first-
order around the initial BGP, the consumption-equivalent welfare gain of moving from allocation b

to b̃ is exp
(
ψλ
ρ
γ ′
(
ln b̃− ln b

))
.

The Proposition shows that in a nonlinear environment, γ defined using local elasticities can
continue to be used to measure the welfare impact of R&D reallocation as a first-order approxi-
mation around a BGP. Formally, as we show in Online Appendix A.7, the vector γ is proportional
to the directional (Gateaux) derivative of welfare with respect to the R&D allocation.3 In other
words, γ is a “first-order” sufficient statistic: it can be used to answer how R&D allocation affects
welfare if one log-linearizes the model around a BGP. The welfare impact arising from endoge-
nous changes in the consumption elasticities or the network structure (due to departure from
log-linearity) is second-order in nature.

As a side note, Proposition 5 also implies that, if the R&D allocation b that generates the BGP
coincides with the sufficient statistic γ measured using local elasticities, then the BGP is locally

3That is, one can use Taylor expansion to approximate an analytic function of one variable f (x̃) around f (x)
as f (x̃) = f (x) + f ′ (x) (x̃− x) + O

(
||x̃− x||2

)
. In our context, the function to be approximated is welfare.

Because welfare is a function of the vector of R&D allocation, the appropriate derivative is the directional (Gateaux)
derivative. Proposition 5 implies that the change in welfare arising from R&D reallocation is V

(
q0; {ℓt} , b̃

)
−

V (q0; {ℓt} , b) = ψλ
ρ2 γ

′
(
ln b̃− ln b

)
+O

(∣∣∣
∣∣∣ln b̃− ln b

∣∣∣
∣∣∣
2
)
, where the approximation error is second-order in the

log-distance between R&D allocations b̃ and b.
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efficient, meaning that small perturbations in R&D allocation cannot improve welfare.

2.6 Knowledge Spillovers from Abroad

Wewill later use our model to assess R&D allocations in real-world economies. As we show, some
countries, like the U.S. and Japan, rely more on domestic knowledge spillovers and less on foreign
knowledge spillovers, while other economies benefit more from foreign spillovers particularly
from the technologically advanced ones. We now extend our model to incorporate this impor-
tant cross-country heterogeneity, namely the reliance on knowledge spillovers from abroad, and
examine how it affects the welfare impact of domestic R&D allocation.

2.6.1 Setup with Knowledge Spillovers from Abroad

We extend the closed economy model in Section 2.1 by introducing international knowledge
spillovers and trade. The consumer nowvalues both domestic and foreign goodswith the constant-
returns-to-scale preference aggregator C (·):

V =
∫∞
0
e−ρt ln C

(
cdt , c

f
t

)
dt,

where cdt is consumption of domestic goods and cft is consumption of foreign goods. As in the
closed economymodel, domestic goods represent a Cobb-Douglas aggregation over sectoral goods
(equations 2 and 3). The economy can import foreign goods cft by exporting unconsumed domestic
goods

(
yt − cdt

)
. Let pft be the relative prices of foreign goods. We impose trade balance:

pft c
f
t = yt − cdt . (18)

Domestic innovation production benefits from foreign knowledge spillovers
{
qfjt

}K
j=1

:

nit = sitηiχit, where χit =
∏K

j=1

[
(qjt)

xij
(
qfjt

)1−xij]ωij
. (19)

Like in the closed economy counterpart (4), nit is the flow of new innovation generated by R&D
resources sit in sector i at time t; new innovation leads knowledge accumulation according to
(5). χit is again the endogenous component of R&D efficiency in sector i. The difference here is
that domestic R&D in sector i benefits from not only domestic knowledge qjt in sector j but also
foreign knowledge qfjt. The exponent xij captures the share of domestic contribution of knowledge
spillover from sector j to sector i; when xij = 1 for all i, j, the innovation production function
(19) coincides with the closed economy version (4). xij’s could differ across countries for various
reasons. For instance, it could reflect a country’s R&D comparative advantage; it could also reflect
the degree to which foreign knowledge is accessible and may vary due to the cultural and political
relations between the domestic economy and the rest of the world.
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The domestic planner’s problem is allocating workers and R&D resources to maximize domes-
tic welfare, taking the time path of import prices

{
pft

}
and foreign knowledge

{
qft

}
as given:

V ∗
(
q0,
{
qft , p

f
t

}∞

t=0

)
≡ max

{sit,ℓit}

∫∞
0
e−ρt ln C

(
cdt , c

f
t

)
dt, (20)

subject to the open economy innovation production function (19); trade balance (18); goods pro-
duction functions (2) and (3); the law of motion for domestic knowledge (5); and resource con-
straints (6). To ensure the planning problem (20) is well-defined, we assume

∣∣∣ d ln qfit
dt

∣∣∣ is bounded,
and pft > 0 is bounded away from zero.

Remark. We make three remarks on the economic environment with foreign spillovers. First,
while we assume xij to be exogenous and enters the innovation production function (19) log-
linearly, our analysis holds as a first-order approximation in a richer environment where xij de-
pends endogenously on the relative levels of domestic and foreign knowledge stock. This result,
derived in Online Appendix B.7, is analogous to our closed-economy analysis in Section 2.5.

Second, we model international trade through the export of domestic bundle in exchange
for the foreign bundle. This formulation significantly simplifies the exposition by removing the
planner’s incentive to use R&D allocation to manipulate the terms-of-trade (i.e., the relative prices
of domestic products) and market power vis-a-vis foreign consumers.

Third, it is worth emphasizing that we do not analyze the optimal R&D allocation from the
perspective of maximizing “global welfare”. Doing so requires setting up a multi-country envi-
ronment, which is certainly interesting and creates the opportunity to analyze a new set of other
important issues—such as understanding cross-country R&D comparative advantages and strate-
gic R&D policy—but it is beyond the scope of this paper.

2.6.2 Optimal R&D Allocation and Welfare with Knowledge Spillovers from Abroad

We now derive, in the setting with foreign spillovers, the optimal R&D allocation and the welfare
impact of reallocating R&D resources.

Proposition 6. Given paths of foreign knowledge and relative import prices
{
qft , p

f
t

}∞

t=0
, the solu-

tion to the open economy planner’s problem (20) is time invariant and follows, along the entire time
path, ℓi/ℓ̄ = βi and si/s̄ = γi, where

γ ′ = ξ−1 ρ

ρ+ λ
β′
(
I − Ω ◦X

1 + ρ/λ

)−1

. (21)

ξ ≡ ρ
ρ+λ

β′
(
I − Ω◦X

1+ρ/λ

)−1

1 is a constant that ensures
∑

i γi = 1;X ≡ [xij] is the matrix encoding
the share of domestic contribution to cross-sector knowledge spillovers; ◦ is the Hadamard product.

Proposition 6 generalizes Proposition 1 in Section 2.2 to an open economy. The ij-th entry
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of the Leontief inverse
(
I − Ω◦X

1+ρ/λ

)−1

≡∑∞
m=0

(
Ω◦X
1+ρ/λ

)m
summarizes the network spillover ef-

fects from additional domestic knowledge in sector j on subsequent domestic innovation in sector
i. Unlike in the closed economy, each round of network effect is no longer captured by the inno-
vation networkΩ but is instead captured byΩ◦X : in the presence of knowledge spillovers from
abroad, domestic R&D only contributes partially to the total knowledge spillovers from sector j
to sector i; the elasticity of innovation efficiency in sector i with respect to domestic knowledge
in sector j is captured by the ij-th entry of Ω ◦X (i.e., ∂ lnχi

∂ ln qj
= ωijxij).

Proposition 6 highlights that countries with more self-contained innovation networks—such
the U.S. and Japan, as we show later, where R&D builds more heavily on domestic rather than
on foreign knowledge—should allocate more R&D to network-central sectors. Conversely, coun-
tries that benefit more from foreign spillovers should direct R&D toward sectors that account for
greater domestic value-added. Using our intuition from the closed economy Proposition 1, it is
as if economies with self-contained innovation networks have patient planners while economies
reliant on foreign knowledge have impatient planners. To see this, consider an economy in which
the domestic share of knowledge spillovers is constant across all sector-pairs, xij = x. The Leon-

tief inverse in (21) simplifies to
(
I − x · Ω

1+ρ/λ

)−1

. Greater reliance on foreign knowledge (lower
x) is therefore isomorphic to a higher discount rate ρ in a closed-economy, as if the planner place
less value on long-term innovation spillovers.

The proportionality constant ξ in equation (21) ensures γi sums to one. It is a measure of R&D
self-sufficiency. ξ ≤ 1 in open economies and is decreasing in foreign dependence; ξ = 1 only if
the economy does not benefit from any foreign spillovers (xij = 1 for all i, j).

Our next result provides the consumption-equivalent welfare impact of adopting the optimal
R&D allocation, extending our closed-economy result in Proposition 4.

Proposition 7. Consider an open economy with R&D self-sufficiency measure ξ and given paths of
foreign knowledge and relative import prices

{
qft , p

f
t

}∞

t=0
. For any path of worker {ℓt} and time-

invariant R&D allocation b, the consumption-equivalent welfare impact of adopting the optimal R&D
allocation is

L (b; ξ) = exp

(
ψξ
λ

ρ
γ ′ (lnγ − ln b)

)
. (22)

Relative to the closed-economy counterpart (15), the open-economy formula (22) depends ad-
ditionally on ξ, the R&D self-sufficiency measure defined in Proposition 6. This term formalizes
the notion that, in economies where domestic R&D matters less for long-run spillovers (lower ξ),
suboptimally allocating domestic R&D is also less consequential for welfare.
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2.7 Additional Results and Theoretical Extensions

Section 2.7.1 incorporates a production network into the baseline model. Section 2.7.2 discusses
potential inefficiencies in a decentralized equilibrium. Section 2.7.3 briefly describes other ex-
tensions in the Online Appendix. Among others, we extend our model by incorporating some
additional features: semi-endogenous growth; a planner who can only reallocate across a sub-
set of sectors; an open-economy planner who internalizes the impact of domestic innovation on
foreign variables; sector-specific λi; and heterogeneous row-sums of Ω.

2.7.1 Production Network

Our baseline model features a simple production structure where all goods are produced directly
from labor. We now discuss how to tractably incorporate a canonical production network into our
framework. More details of this extension are provided in Section B.2 of the Online Appendix.

Conceptually, for the optimal R&D allocation γ ′ ∝ β′
(
I − Ω

1+ρ/λ

)−1

, the presence of a pro-
duction network requires a different construction for the β vector, but the innovation networkΩ
term is unaffected. Formally, the β vector should capture the elasticity of aggregate consumption
with respect to the productivity in each sector ( ∂ ln yt

∂ ln qψit
); in the presence of a production network, it

should reflect not only the consumer preferences but also the production network structure. With
this adjustment, our main results continue to hold in this environment.

Specifically, suppose the production of good i requires other goods as intermediate inputs, as
in the canonical production network model (Acemoglu et al., 2012):

yit =
(
qψitℓit

)αi∏K
j=1m

σij
ijt , αi +

∑K
j=1σij = 1, (23)

where mijt is the quantity of good j used for the production of good i, αi is sector i’s output
elasticity to value-added, and σij is sector i’s output elasticity to input j. The baseline model is a
special case with σij = 0 for all i, j.

Unlike in our baseline model, the elasticity of the aggregate consumption with respect to
sectoral productivity is no longer the consumption elasticity βi; instead, standard results from
the production network literature (e.g., see Hulten, 1978) imply that ∂ ln yt

∂ ln qψit
= β̂i ≡ αiδi, where

δ′ = β′ (I −Σ)−1 is the influence vector, and Σ ≡ [σij] is the input-output elasticity matrix. If
the marginal product of labor is equalized across sectors, then β̂i is the share of labor allocated
to sector i. Our main results from previous sections, including the optimal R&D allocation and
the welfare sufficient statistic, continue to hold when we use the vector β̂ in place of β. In our
empirical exercises, we measure this vector using sectoral value-added as a share of GDP, thereby
accounting for the production network.
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2.7.2 Potential Inefficiency in A Decentralized Market

Why may a decentralized market not allocate R&D resources efficiently? In an innovation net-
work, knowledge is a public good, as knowledge creation benefits subsequent R&D in other sectors
and all future periods. To the extent that innovators do not fully internalize the future benefits,4 a
decentralized market does not implement the efficient R&D allocation. To demonstrate the poten-
tial inefficiency, Online Appendix B.4 constructs a decentralized equilibrium in which innovators
conduct R&D only in pursuit of profits—each innovation is patented, thereby granting the in-
novator a temporary stream of profits until replaced by a future innovation—disregarding any
beneficial spillovers their R&D activities may provide in the future. As we show, the decentral-
ized allocation of R&D resources along a BGP follows the consumption elasticity β, which can be
efficient only if the society is completely myopic (ρ/λ→ ∞).

This illustrative decentralized equilibrium lacks many real-world features of the market for in-
novation (e.g., multi-sector firms, mergers and acquisitions, and patent licensing). Nevertheless, it
is important to note that, by comparing the R&D allocation in the data to the first-best, our notion
of allocative efficiency—measured by the consumption-equivalent welfare impact of reallocating
R&D optimally—does not require that we take a stance on firms’ equilibrium conduct; instead, it
directly calculates the welfare impact of reallocating R&D based on the economic environment
specified in Section 2.1.

2.7.3 Other Theoretical Extensions

The Online Appendix includes a number of additional extensions that generalize our main results
to various economic environments.

Our baseline model features endogenous growth: a positive growth rate of aggregate out-
put along a balanced growth path in the absence of population growth. Section B.3 embeds an
innovation network into a semi-endogenous growth setting.

Section B.5 shows that our results extend naturally to a setting where the planner is con-
strained and can reallocate resources across only a subset of sectors: the constrained-optimal
resource allocation within the subset is proportional to the unconstrained optimal allocation γ.

The open economy analysis in Section 2.6 considers a domestic planner who takes the paths
of foreign knowledge as given. Section B.6 considers a domestic planner who internalizes the
impact of domestic allocations on foreign variables. Section B.7 concerns a setting where both the
innovation network (Ω) and the elasticities of foreign spillovers (X) are endogenous.

Section B.8 considers an environment with sector-specific λi, the elasticity at which flow R&D
expand the knowledge stock.

4It is worth noting that patents do not necessarily correct for knowledge externalities: while the patent holder
has the exclusive right to use the invention, it does not preclude others from benefiting from knowledge spillovers.
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Section B.9 considers a setting where the row-sums of Ω may differ (and not equal to one).
We show that the knowledge stock in each sector no longer grows at the same rate along a BGP;
instead, the vector of growth rates of qit form the right-Perron vector of Ω.

Section B.10 allows for factor mobility between production and R&D.

3 Data

This section describes the data for our empirical analyses. We use patent citation data across
sectors and countries to construct the global innovation network. We also use data on sectoral
production, final use, and R&D. Here we briefly describe how we construct and harmonize these
data. Section C of the Online Appendix provides more details.

3.1 Data on Patents

U.S. Patents U.S. patent data are from the United States Patent and Trademark Office (USPTO).5

This database provides detailed patent-level records for nearly seven million patents granted by
the USPTO since 1976. The data include, for each patent, the application and grant years, the
technology classifications based on the International Patent Classification (IPC) system, and the
geographic locations of the patent assignee and patent inventors (the former holds legal ownership
rights to the patent while the latter may not). Central to our network analysis, we observe each
patent’s citations of prior patents as well as the citations it receives from subsequent patents up
to 2020, the year we extracted the data. In our empirical analysis, we use patents filed before the
end of 2014 to mitigate the right-truncation problem, since patents filed more recently may still
be in the approval process.

Global Patents To capture global innovation, we use Google Patents’ global patent data, which
contain information onmore than 36million patents from over 40major patent authorities around
the world, including those in the U.S., the European Union, Japan, and China, among others,
starting from the 18th century (data prior to the 1970s have limited coverage). Google Patents
global innovation data are constructed based on the raw data records at DOCDB (EPO worldwide
bibliographic data), which are the same records underlying other global patent datasets such as
the PATSTAT database. As a result, Google Patents’s data coverage and variable quality are nearly
identical to those of PATSTAT.We choose to use Google Patents data for ourmain analysis because
they are free of charge for any researcher, and we compare Google Patents to PATSTAT in detail
in the Online Appendix D.

5We accessed the patent data via the USPTO PatentsView platform at https://www.patentsview.org/download/.
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For each patent, Google Patents supplies information similar to the USPTO data described
above. We assign each patent to a geographical unit using the country of residence of its inven-
tors(s), country of residence of the assignee(s), and country of the patent authority, in that order.
When a patent is associated with inventors or assignees from multiple countries, we attribute the
patent to these countries assuming fractional and equal weight per assignee/inventor.

A major challenge when working with international patent data is multi-filing: to protect in-
tellectual properties, it is common practice for innovators to file the same invention with multiple
patent authorities in different countries, forming what is called a “patent family.” To avoid double
counting these inventions, our analysis uses only the first patent filed in each family when count-
ing new innovation, while attributing all citations made to a whole family to this first patent.
To identify patent family, we use the patent family ID assigned by Google Patents, self-reported
multi-filing status, and the unique identifier for patents filed under the Patent Cooperation Treaty,
which is an international law treaty aimed at protecting innovations across countries.

Wemeasure the number of patents produced in a country-sector-year, both the raw counts and
with quality adjustments using the number of citations each patent received. To capture actual
patent timing, we use the year a patent was filed rather than granted.

3.2 Data on Production, Final Use, and R&D Allocation

Production and Final Use In our cross-country analysis, for each country and sector, we use
theWorld Input-Output Database (WIOD, Timmer et al., 2015) to extract sectoral information. The
data cover the years 2000–2014 and 43 major economies, which altogether represent more than
85% of world GDP. WIOD’s sectoral categorization follows the two-digit International Standard
Classification (ISIC) revision 4, with a total of 56 sectors covering the entire production spectrum,
including primary, manufacturing, and service sectors. We obtain data on value-added (gross
value-added, “VA”), employment (“empe”), output (gross output, “GO”). We also obtain informa-
tion on intermediate inputs, value used for consumption, imports, and exports. For the U.S., we
also obtain more detailed sectoral production, consumption, and import-export data, comprising
181 sectors from 1990 to 2019, from the Bureau of Labor Statistics (BLS).

Sectoral R&D Allocation Our quantitative analysis uses data on R&D allocation across differ-
ent technology classes in each country. There is no standard database to exhaustively measure
such information. Our primary measure relies on aggregating firm-level R&D expenditures to
the country-sector-year level, based on three widely used firm-level data sets: Compustat, World-
scope, and Datastream. Combined, these data cover more than 110,000 global firms located in 160
countries and account for over 95% of the world’s total market capitalization. For multination-
als, we first attribute the firm-level R&D expenditures to IPC-country level in proportion to each
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firm’s shares of patents in each IPC-country, following Griffith, Harrison and Van Reenen (2006),
and then aggregate to IPC-country-year level.

Our primary measure of sectoral R&D is imperfect, as the firm-level data sets oversample large
firms and have potentially different reporting standard across countries; we also miss R&D inputs
from public sectors. Nevertheless, it is important to note that, as our theory concerns the cross-
sector R&D allocation, what matters for our quantitative analysis later is the allocation shares of
R&D resources across sectors in each country and not the aggregate R&D levels; any mismeasure-
ment that affects all sectors proportionally should have no quantitative impacts. As robustness
checks, we later show that our primary measure of R&D allocation shares correlates strongly
with two independent sources of R&D data, thereby giving us confidence in using our measure
for quantitative analysis. The first robustness check calculates cross-sector R&D allocation using
the innovation output (which is better measured) rather than input: the number of patents pro-
duced in each country-IPC (or country-sector) divided by total number of patents produced in that
specific country (correlation with our primary measure of sectoral R&D averages to 0.74 across
countries; see Appendix Table A.1). The second robustness check utilizes the OECD Analytical
Business Enterprise Research and Development (ANBERD) Database (Machin and Van Reenen,
1998), which has country-sector-level R&D information. Relative to our primary R&D measure,
the ANBERD Database has more limited country-year coverage and relies more on imputations
from firm-level surveys. Our primary R&D measure also allows us to explicitly and transparently
attribute R&D of multi-sector or multinational enterprises to different sectors and countries. Nev-
ertheless, for all the major economies in both data sets, R&D allocation from ANBERD is highly
correlated with our primary measure (see Appendix Table A.1), and our quantitative results are
consistent using both data.

3.3 Concordance

Patent data are classified according to the IPC system, which is distinct from the classifications
in our sectoral data. We build concordance between these two data types to construct sectoral
measures of innovation activities and reversely to project sectoral measures into technology class
levels. To project patents from IPC onto sectors, we leverage the sectoral classifications covered in
the three firm-level data sets described above. For the U.S., we link the USPTO patent database to
Compustat using the bridge file provided by Kogan et al. (2017) and Ma (2021). Firms are classified
by the North American Industry Classification System (NAICS) codes, which are then mapped
to BLS sectors using the crosswalk file provided by the BLS website.6 For the global analysis,
we follow the analogous procedure and match Google Patents with global firm data from the

6The crosswalk can be accessed at: https://www.bls.gov/emp/documentation/crosswalks.htm.
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Worldscope and Datastream databases. This process provides each patenting firm’s International
Standard Industrial Classification (ISIC), which can then be accurately mapped to WIOD that is
also organized using the ISIC system. To reverse-project country-sector-year level measures onto
country-IPC-year, we use the sector-IPC mapping provided in Lybbert and Zolas (2014).

We provide details on these matching procedures and the representativeness of using innova-
tion measures aggregated from firm-level data in Section C of our Online Appendix.

4 Innovation Network and Knowledge Spillovers

In this section, we build several key data elements that will be used in our main quantitative
analysis in Section 5. We first construct the innovation networkΩ and discuss its empirical prop-
erties. We then empirically validate a key mechanism in our model, that knowledge spillovers
occur through innovation networks both domestically in the U.S. and globally.

4.1 Innovation Network

Constructing the Innovation Network We construct the innovation network from patent
citations. First, we build the sector-to-sector innovation network. Let Citesijt denote the total
number of times that patents in sector i cite patents in sector j, among all patents filed in year t.
As a baseline construction, we follow (Acemoglu et al., 2016) and define ωijt as the share of total
citations patents in sector i made to sector j in year t:

ωijt ≡
Citesijt∑K
k=1Citesikt

. (24)

The object ωijt measures the extent to which upstream sector j’s prior knowledge benefits inno-
vation in sector i. The matrixΩt, whose ij-th entry is ωijt, captures the knowledge flow network
we refer to as the innovation network. In a global setting, all subscripts will include additional
country dimensions indicating the countries of sectors i and j, and the innovation network will
measure the extent to which upstream country’s sector j’s prior knowledge benefits innovation
in focal country’s sector i. We can construct a country-specific network using patents from each
country; we can also include patents from a time window broader than one year, such as using all
patents over five or ten years.

The sector-to-sector innovation networks appear to be stable over time and across countries,
suggesting their ability to capture some deep relations between sectoral innovation and tech-
nology diffusion. Table A.5 of the Online Appendix shows the serial correlation of entries in
Ωt is near perfect a decade apart and remains above 0.8 even three decades apart. Table A.6 of
the Online Appendix demonstrates that the innovation network constructed by pooling patents
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from all countries near perfectly correlates with the U.S.-specific network (correlation 0.97) and
highly correlates (correlation≈ 0.8) with country-specific innovation networks from Japan, China,
Germany, Canada, the United Kingdom, and France. These findings imply that decisions about
country and time specificities of the innovation network do not materially affect our analysis.

We should point out that the knowledge spillover network is inherently difficult to measure.
Despite the evidence (Section 4.2 below in particular) for the usefulness of our citation-based
construction, it is not perfect. In later analysis, we provide several alternative constructions of
the network, such as weighting connections by the quality (total citations) of the cited or citing
patents, to focus only on spillovers among major patents; we also create an innovation network
Ωwith entries proportional to citations, without the normalization by each row’s sum. Our quan-
titative findings are robust across all of these specifications.

Visualizing the Innovation Network Figure 1, Panel (a) visualizes the innovation network
by plotting the matrix Ω of 2010 as a heatmap. Each row and each column is a 3-digit IPC class,
where the color in the i-th row and j-th column corresponds to ωij using the colormap listed to the
right of the figure. Sectors are sorted by decreasing innovation centrality, the empirical properties
of which we will formally discuss below. A key feature is that IPC classes follow a hierarchical
structure: the innovation network is highly asymmetric, and there is a “pecking order” across
sectors. Innovation-central sectors account for a disproportionate share of citations from all other
sectors (columns are dense on the left but become progressively sparser to the right), yet these
innovation-central sectors do not significantly cite noncentral sectors (rows are sparse on the top
but become progressively denser toward the bottom).

Figure 1, Panel (b) visualizes the global innovation network by plotting each country-sector
as a node, with size drawn in proportion to the total patent counts in our sample. An arrow from
country m sector j to country n sector i indicates knowledge flow from mj to ni, with arrow
width drawn in proportion to the share of ni’s citations tomj. For visual clarity, only the largest
countries and sectors are shown. Several patterns emerge from this figure. First, Japan and the
U.S. produce the most patents in our sample. Second, the U.S. receives significantly more foreign
citations than any other economy in our sample; it is a major knowledge exporter and only a
minor knowledge importer.

The Innovation Network Weakly Correlates with Input-Output Networks The innova-
tion networkΩ encodes cross-sector linkages via knowledge spillovers. Another prominent type
of cross-sector linkages occur through input-output relations, as sectors purchase intermediate
inputs from one another during production. Table 1 shows that innovation and production net-
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Figure 1. Visualizing the Innovation Network

(a) IPC-to-IPC (131×131) network Ω (b) The global innovation network
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Notes. The left panel visualizes the IPC-to-IPC (3-digit level) networkΩ as a heatmap, with darker colors representing
larger matrix entries; sectors are ordered according to their innovation centrality. The right panel visualizes the global
innovation network for six economies with the highest total patent output in our sample. Each node is a country-
sector, with size drawn in proportion to patent output. Arrows represent knowledge flows, with width drawn in
proportion to citation shares.

works are only weakly correlated. In other words, the two network relations capture different
connections across sectors. Specifically, for each of the top ten countries ranked by total patent
output, we compute the industry-by-industry input-output expenditure share matrix, which is a
row stochastic matrix (as is Ω) commonly used to represent input-output relationships. Table 1
presents the correlation between entries in Ω and those in the input-output matrix. The correla-
tion is weak (<0.35) in all economies.

Table 1. Correlations Between Country-Level Innovation Network and Production Network

1. Innovation Network and Knowledge Spillovers

1.1. Innovation Network

Figure 1. Visualizing the Innovation Network

(a) IPC-to-IPC (131×131) Network Ω (b) Global Innovation Network Across Country-Sectors

Table 1. Correlations of Between the Innovation Network
and Country-Level Production Networks

US Japan China South Korea Germany Russia France UK Canada Netherlands

0.32 0.28 0.35 0.31 0.23 0.19 0.36 0.41 0.29 0.22

2

Notes. This table presents the correlations between the country-level innovation network matrix and the country-
level input-output expenditure share matrix for the top 10 countries ranked by total patent counts during 2010–2014.

Innovation Centrality Across Sectors We provide some descriptive statistics of the innova-
tion centrality a, which is the dominant left eigenvector of the innovation networkΩ. Recall that
in our model, a is also the R&D allocation vector that maximizes the growth rate of a closed econ-
omy (Corollary 1) and is an important determinant of the optimal R&D allocation. The left panel
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of Figure 2 plots the innovation centrality ai across 3-digit IPC sectors using the 2010 U.S. inno-
vation network, where sectors are ordered along the x-axis in descending ai. The figure shows
innovation centrality is highly heterogeneous across sectors. To maximize economic growth, the
most innovation-central sector should be allocated about twice as many R&D resources as the
5th sector ranked by ai, about ten times as many as the 20th sector, and about 30 times as many
as the 50th sector. The right panel of Figure 2 identifies the top 10 IPC classes; these include
several technological classes related to medical science, computing, semiconductors, and electric
communication technologies, among others.

Figure 2. Innovation Centrality and Key Sectors

(a) Innovation Centrality Across IPCs
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(b) Top Ten IPCs by Innovation Centrality ai

1 A61 medical or veterinary science; hygiene
2 G06 computing; calculating or counting
3 H01 basic electric elements
4 H04 electric communication technique
5 G01 measuring; testing
6 B60 vehicles in general
7 G02 optics
8 B01 physical or chemical processes or

apparatus in general
9 C08 organic macromolecular compounds; their

preparation or chemical working-up;
compositions based thereon

10 F16 engineering elements or units; general
measures for producing and maintaining
effective functioning of machines or
installations; thermal insulation in general

Figure 3. Cross-Sector Distribution of Domestic Citation Shares by Country

Panel (a) 56 WIOD

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

0 .5 1 0 .5 1 0 .5 1

United States Japan China

South Korea Germany Russia

France United Kingdom Canada

1990 2000 2010

de
ns

ity

domestic share of citations in each industry

3

Notes. This figure presents the innovation centrality of different technology classes categorized using IPC. Panel (a)
plots innovation centrality ai across 3-digit IPC sectors ranked in descending order based on ai. Panel (b) lists the
top 10 IPC classes by their innovation centrality.

Cross-Country Linkages in the Innovation Network How much do countries benefit from
foreign knowledge? To answer this, for each country m, sector i, and year t, we compute the
domestic share of citations made by patents in country-sectormi. Figure 3 shows the distribution
of domestic citation shares across all sectors for the ten economies with the highest patent counts
in our sample, for the years 1990, 2000, and 2010. The U.S. relies relatively sparingly on foreign
knowledge: consistently across these three decades, about 70% of citations by U.S. patents are
made to other U.S. patents. In contrast, citations made to foreign patents account for the vast
majority of citations by all other economies except Japan, suggesting these economies benefit
significantly from foreign knowledge, most notably from the U.S. The Japanese self-citation shares
increased over time on average, from 65% in 2000 to 77% in 2010. Declining foreign reliance over
time is also observed for China and South Korea, although their levels of foreign reliance remain
high.
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Figure 3. Cross-Sector Distribution of Domestic Citation Shares by Country
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Notes. This figure presents the distribution of each country’s domestic citation shares across sectors, showing the
distribution using 1990, 2000, and 2010 data. Sector definitions follow 3-digit IPC classes. Domestic citation share for
each country-sector is defined as the number of citations made to domestic patents as a share of total citations made
by new patents invented in that each country-sector.

4.2 Knowledge Spillovers Through the Innovation Network

We now provide evidence that knowledge spillovers occur through the innovation network, with
the purpose of validating our model mechanism and the innovation network construction. We
build on Acemoglu, Akcigit and Kerr (2016)—which provide similar evidence for the U.S. domes-
tic network—and extend using instrumental variables (IVs) and to the global setting. The IVs are
constructed based on time-varying sectoral exposure to tax-induced user cost of R&D (Wilson,
2009 and Thomson, 2017); they help isolate movements in patent output driven by knowledge
spillovers and not by common shocks to connected sectors (Manski, 1993 and Bloom, Schanker-
man and Van Reenen, 2013). We find evidence for directional knowledge spillovers: each sector’s
innovation output responds only to past upstream innovations and does not respond to past in-
novation from downstream sectors even though they are also connected. We also show that rela-
tive to input-output linkages, the innovation network is a significantly stronger channel through
which knowledge spillovers take place.

4.2.1 U.S. Evidence

We first test the mechanism in the U.S. using an empirical specification derived by our model,
treating the U.S. as a closed economy. Specifically, integrating our law of motion (5) over time,
we can express the knowledge stock as ln qjt =

∫∞
0
e−λs lnnj,t−s ds. The innovation production
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function (4) further implies a log-linear relationship among sector i’s new patents, sectoral R&D,
and past patents from other upstream sectors:

lnnit = ln ηi + ln sit + λ

K∑

j=1

ωij

(∫ ∞

0

e−λs lnnj,t−s ds

)

︸ ︷︷ ︸
≡lnχit, the aggregation of knowledge that
benefits innovation in sector i at time t

. (25)

Equation (25) implies that, after controlling for sectoral R&D expenditures, past patents lnnj,t−s
in sector j influence new patent output in sector i through the innovation network ωij . Equation
(25) also shows that, importantly, knowledge spillovers’ effect is directional: the knowledge flow
from sector j to sector i operates through ωij and not ωji.

We test the discrete-time analogue of (25) by constructing the knowledge aggregator χit from
past patents. As a baseline measure, for each sector i, we enumerate over all sectors j from which
knowledge flows to i, aggregating j’s log patent counts lnnj,t−τ in the past 10 years (1 ≤ τ ≤ 10),
weighted by ωij,t−τ , the share of citation made from i to j in the corresponding year:

KnowledgeUpit ≡∑j ̸=i
∑10

τ=1ωij,t−τ lnnjt−τ . (26)

KnowledgeUpit captures the stock of past knowledge “upstream” of sector i and is the empirical
counterpart to lnχit. We then perform the following regression, with sector and year fixed effects:

lnnit = β1 × KnowledgeUpit + β2 × lnR&Di,t−1 + ξi + ξt + ϵit, (27)

where nit is the number of patents filed in sector i year t that are eventually granted. R&Di,t−1

is the R&D stock, which is the accumulated R&D expenses over the past five years using a decay
rate of 15%, following Hall et al. (2005) and Bloom et al. (2013). These results are robust to using
alternative measures of R&D such as concurrent or lagged R&D expenditures, and R&D stocks
calculated using 5% or 10% knowledge decay rate.

Note that, when constructing the upstream knowledge aggregator (26), we exclude the lagged
patent output from each sector itself. Doing so ensures the coefficient β1 in regression (27) is not
driven by serially correlated shocks to sectoral patent output, but our results are robust to includ-
ing lagged patent output from own sector as an additional regressor (Appendix Table A.8). Also
note that, theoretically, the knowledge aggregator in (25) discounts past patents exponentially.
Our empirical construction (26) features a discrete cutoff window (τ ≤ 10 years) to be agnostic
about the discount factor λ, but our results are robust to alternative values of τ (see Appendix Ta-
ble A.9 for τ = 5 and 20), exponential discounting with an annual discount rate of 15% (Appendix
Table A.10), or estimating the impact of past upstream patents nonparametrically at different time
lags (Appendix Figure A.9).

Table 2, column (1) presents the results of regression (27). Sectoral R&D expenditure signifi-
cantly predicts the number of new patents filed in a given year, with an elasticity of 0.275. The
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Table 2. U.S. Evidence of Innovation Spillovers Through the Innovation NetworkTable 2. Directed Nature of Knowledge Flow

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6) (7) (8)

KnowledgeU p

it
0.555*** 0.605*** 0.509*** 0.583** 0.790*** 0.840*** 0.756*** 0.917***

(0.174) (0.194) (0.169) (0.269) (0.197) (0.207) (0.192) (0.289)

ln(R&D Stock)i,t−1 0.426*** 0.433*** 0.410*** 0.408*** 0.340*** 0.347*** 0.328*** 0.206

(0.100) (0.101) (0.096) (0.111) (0.114) (0.114) (0.111) (0.133)

KnowledgeDown

it
-0.112 -0.110

(0.152) (0.095)

KnowledgeU p,IO

it
0.258 0.198

(0.165) (0.203)

Specification OLS OLS OLS IV 2nd Stage OLS OLS OLS IV 2nd Stage

IV 1st Stage F-statistics 427 427

R2
0.916 0.917 0.917 0.169 0.900 0.900 0.900 0.092

No. of Sectors 95 95 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1140 1900 1900 1900 1140

Fixed Effects Sector, Year Sector, Year

Table 3. Evidence of the Global Innovation Network for Knowledge Spillovers

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6) (7) (8)

KnowledgeU p

mit
0.162*** 0.188*** 0.159*** 0.226** 0.352*** 0.393*** 0.350*** 0.453***

(0.055) (0.056) (0.055) (0.113) (0.077) (0.080) (0.078) (0.143)

ln(R&D Stock)mi,t−1 0.043*** 0.043*** 0.043*** 0.079*** 0.084*** 0.084*** 0.083*** 0.083***

(0.013) (0.013) (0.013) (0.020) (0.018) (0.018) (0.018) (0.030)

KnowledgeDown

mit
-0.059 -0.094

(0.039) (0.062)

KnowledgeU p,IO

mit
0.070 -0.054

(0.065) (0.068)

Specification OLS OLS OLS IV 2nd Stage OLS OLS OLS IV 2nd Stage

IV 1st Stage F-statistics 148 148

R2
0.968 0.968 0.968 0.035 0.943 0.943 0.943 0.028

No. of Country x Sectors 570 570 556 282 570 570 556 282

No. of Obs 11014 11014 10774 4587 11014 11014 10774 4587

Fixed Effects Country x Sector, Country x Year, Sector x Year Country x Sector, Country x Year, Sector x Year

4

Notes. This table tests the relation between innovation in a focal sector and past innovation in sectors connected
through the innovation network, using the U.S. data from BLS sectors. We restrict the sample to sectors that have at
least 100 patents over the full sample period. Standard errors in parentheses are clustered at the sector level. ∗, ∗∗,
and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively.

knowledge stock upstream of each sector (KnowledgeUpit ) also significantly predicts patent output,
with an elasticity of 0.586. Column (5) shows that both variables also predict patent quality: sec-
tors with greater R&D and greater upstream knowledge stock tend to produce patents with more
future citation counts. In the Online Appendix Table A.11, we also demonstrate these variables
predict the commercial value of innovation measured using the stock market reaction upon patent
approval (Kogan et al., 2017).

These regressions provide supportive evidence that past knowledge in sectors upstream of i
benefits subsequent patent production in the focal sector i. An alternative story relates to common
shocks: a group of sectors connected to each other via citation linkages may face similar demand,
supply and investment opportunities, leading to co-movements of innovation activities. Serial
correlations in such common shocks would lead to a positive coefficient β1 in regression (27)
even without cross-sector knowledge spillovers. This is a version of the “reflection problem” à la
Manski (1993) and Bloom et al. (2013).

We implement three additional analyses to address the “common shock” concern. First, we ex-
ploit the directional nature of knowledge spillovers. We construct the knowledge stock aggregator
for sectors downstream of i in the innovation network:

KnowledgeDownit ≡∑k ̸=i
∑10

τ=1ωki,t−τ lnnkt−τ .

KnowledgeDownit aggregates the patent output in all sectors k ̸= i, weighted by the extent to which
patents in sector k cite those in sector i, and is therefore a measure of the knowledge stock down-
stream of sector i. Because knowledge flow is directional, there should be an asymmetry: while
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KnowledgeUpit should positively predict subsequent patent output in sector i, KnowledgeDownit

should not. Yet any common shocks hitting this network should generate symmetric correlations
in innovation output for focal sector i and both its upstream and downstream sectors.

Columns (2) and (6) of Table 2 add KnowledgeDownit to our baseline regressions. We make two
observations. First, adding KnowledgeDownit as a control does not meaningfully affect the economic
or statistical significance of our two baseline variables. This suggests our baseline regressions are
not simply picking up correlated shocks to local technology clusters. Second, the coefficient on
KnowledgeDownit is precisely zero, confirming our key model mechanism and that knowledge flow
along the innovation network is directional—it goes only from upstream to downstream, and not
the other way around.

Another related concern is that common shocks operate not through technological linkages
but through input-output (IO) linkages. To address this, we construct the aggregator KnowledgeUp,IOit

similarly to KnowledgeUpit , but using patents from other sectors weighted not by the innovation
network, as in (26), but instead by sector i’s cost share on inputs from sector j. Columns (3)
and (7) of Table 2 show the regression results when including KnowledgeUp,IOit . Knowledge from
innovation-upstream sectors remains an economically and statistically significant predictor of
subsequent innovation in the focal sector. By contrast, KnowledgeUp,IOit has a smaller impact on
sector i’s patent quantity, and insignificant effect on innovation quality in these specifications.
These results, along with the fact that the innovation network only weakly correlates with the IO
network (see Table 1), imply that the innovation network provides valuable incremental informa-
tion that is particularly powerful for understanding knowledge spillovers across sectors.

Next, we adopt another approach to address the “common shock” concern using tax-induced
changes to the effective cost of R&D to create exogenous variations in innovation activities, fol-
lowing Bloom, Schankerman and Van Reenen (2013). We briefly describe the approach here and
provide more details in the Online Appendix E.3. The approach leverages the fact that the user-
cost of R&D capital (i.e., the cost of conducting R&D) varies with state-level R&D tax credit, de-
preciation allowance, and corporate tax rate. Cross-sector heterogeneity in the geographic dis-
tribution of R&D activities in turn translates into R&D cost differences across sectors and over
time. For the U.S., we use Wilson (2009)’s estimates of state-specific R&D cost shifters, combined
with our estimates of the cross-state distribution of each sector’s R&D, to calculate a sector’s R&D
costs. For the global setting below, we follow Thomson (2017) to calculate the user cost of R&D
capital at the country-sector-year level.

We first create fitted values of sectoral innovation output (lnnit) using R&D cost shifters; we
then use these fitted values in equation (26) to construct a predicted value of ̂Knowledge

Up

it , which
is in turn used as an instrumental variable (IV) for KnowledgeUpit for a two-stage least-squares
(2SLS) analysis. Columns (4) and (8) in Table 2 remain qualitatively and quantitatively robust to
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using this IV strategy. Details of this analysis are provided in Online Appendix E.3.

4.2.2 Global Evidence

We now test international knowledge spillovers in our global sample. First, we construct an anal-
ogous measure of upstream knowledge stock: for each focal country m, sector i in year t, we
enumerate over all countries c and sectors j in our sample, aggregating the (log-)patent output in
cj over the past 10 years, weighted by the share ofmi’s citations that are to cj in the corresponding
year:

KnowledgeUpmit ≡
∑

cj ̸=mi
∑10

τ=1

Citesmi→cj,t−τ∑N
c′=1

∑K
k=1Citesmi→c′k,,t−τ

lnncj,t−τ . (28)

Next, we adapt our closed economy test of knowledge spillovers to perform on the global
innovation network. In this case, the unit of observation is at the country-industry-year level,
and we include a saturated set (country-industry, country-year, industry-year) of fixed effects:

lnnmit = β1 × KnowledgeUpmit + β2 × lnR&Dmi,t−1 + ξmi + ξmt + ξit + εict. (29)

Table 3 shows the results: knowledge stock upstream of each country-industry significantly pre-
dicts subsequent patent counts (column 1) and citation-adjusted patent counts (column 5) even in
the global setting. The coefficients are lower than estimates based only on the U.S., suggesting
that knowledge spillovers are stronger across sectors within the U.S. than they are across coun-
tries, potentially due to barriers to cross-border knowledge diffusion such as cultural and language
differences, and inappropriateness of foreign technology.

To rule out common shocks to technological and input-output clusters, we again make use of
knowledge aggregated from downstream, from the input-output network, and the tax-induced IV,
and find evidence in support of knowledge spillovers through the innovation network.

5 Application: R&D Resource Allocation in the Data

This section hosts our main empirical analysis, which uses our model to study the allocation
of R&D resources in the data. We present the computed unilaterally optimal allocation of R&D
resources across sectors for each country in our sample. We show that on average, sectors that
should havemore R&D resources do receivemore resources, especially for the five economieswith
the most patents during our sample period. Nevertheless, the residual misalignment between the
optimal and actual allocations remains large and is highly heterogeneous across countries. We
compute the welfare gains from adopting the optimal R&D allocation for each country.
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Table 3. Global Evidence of Knowledge Spillovers Through the Innovation Network

Table 2. Directed Nature of Knowledge Flow

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6) (7) (8)

KnowledgeU p

it
0.555*** 0.605*** 0.509*** 0.583** 0.790*** 0.840*** 0.756*** 0.917***

(0.174) (0.194) (0.169) (0.269) (0.197) (0.207) (0.192) (0.289)

ln(R&D Stock)i,t−1 0.426*** 0.433*** 0.410*** 0.408*** 0.340*** 0.347*** 0.328*** 0.206

(0.100) (0.101) (0.096) (0.111) (0.114) (0.114) (0.111) (0.133)

KnowledgeDown

it
-0.112 -0.110

(0.152) (0.095)

KnowledgeU p,IO

it
0.258 0.198

(0.165) (0.203)

Specification OLS OLS OLS IV 2nd Stage OLS OLS OLS IV 2nd Stage

IV 1st Stage F-statistics 427 427

R2
0.916 0.917 0.917 0.169 0.900 0.900 0.900 0.092

No. of Sectors 95 95 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1140 1900 1900 1900 1140

Fixed Effects Sector, Year Sector, Year

Table 3. Evidence of the Global Innovation Network for Knowledge Spillovers

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6) (7) (8)

KnowledgeU p

mit
0.162*** 0.188*** 0.159*** 0.226** 0.352*** 0.393*** 0.350*** 0.453***

(0.055) (0.056) (0.055) (0.113) (0.077) (0.080) (0.078) (0.143)

ln(R&D Stock)mi,t−1 0.043*** 0.043*** 0.043*** 0.079*** 0.084*** 0.084*** 0.083*** 0.083***

(0.013) (0.013) (0.013) (0.020) (0.018) (0.018) (0.018) (0.030)

KnowledgeDown

mit
-0.059 -0.094

(0.039) (0.062)

KnowledgeU p,IO

mit
0.070 -0.054

(0.065) (0.068)

Specification OLS OLS OLS IV 2nd Stage OLS OLS OLS IV 2nd Stage

IV 1st Stage F-statistics 148 148

R2
0.968 0.968 0.968 0.035 0.943 0.943 0.943 0.028

No. of Country x Sectors 570 570 556 282 570 570 556 282

No. of Obs 11014 11014 10774 4587 11014 11014 10774 4587

Fixed Effects Country x Sector, Country x Year, Sector x Year Country x Sector, Country x Year, Sector x Year

4

Notes. This table tests the relation between innovation in a focal sector and past innovation in connected sectors
through the innovation network, in an international setting. We restrict the sample to country-sectors with at least
10 patents over the full sample period. Standard errors in parentheses are clustered at the country-sector level. ∗, ∗∗,
and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels respectively.

5.1 Optimal R&D Allocation

For each country and year, we calculate the unilaterally optimal cross-sector allocation of R&D
resources γ, using Proposition 6:

γ ′ = ξ−1 ρ

ρ+ λ
β

′
(
I − Ω ◦X

1 + ρ/λ

)−1

, (30)

where the proportionality constant ξ ensures that elements in the optimal allocation vector γ sum
to one and is ameasure of R&D self-sufficiency. Wemeasureβ using each country’s sectoral value-
added relative to GDP in that year (thereby accounting for input-output linkages; see Section
2.7.1). Recall that X ≡ [xij] is the matrix encoding the share of domestic contribution to cross-
sector knowledge spillovers; we measure xij as the share of citations from i to sector j that are
toward domestic patents in j. As Figure 3 shows, entries ofX average to above 70% across sectors
for the U.S. but are significantly lower for all other countries except Japan in recent years. ForΩ,
we use the innovation network built using all global patents filed within ten years up to the year
prior to the analysis. That is, for analysis of 2010, we use Ω constructed using all patents filed
between 2000 and 2009.

To implement the formula in (30), we need to specify the discount rate ρ and the elasticity λ
of knowledge growth with respect to the new innovation flows. As a baseline, we set discount
rate ρ = 5%. Because knowledge stock does not have a natural scale, we rely on the empirical
pattern of knowledge spillover dynamics to calibrate λ. Specifically, equation (25) implies that
the spillover effect of past upstream knowledge on current innovation decays over time at rate
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λ. We estimate the spillover effects of past upstream patents nonparametrically at different time
lags (Appendix Figure A.9). We find that the knowledge spillovers have a half-life of about four
years, corresponding to λ = 0.17, which we adopt as the baseline calibration. Qualitatively, our
analysis is not sensitive to the value of ρ/λ: as we show in the Online Appendix Table A.20,
the optimal allocation γ is highly correlated across specifications with alternative values of ρ/λ.7

The Online Appendix also reports additional results and sensitivity checks such as using data
from other sample periods, using alternative specifications forΩ, and calibrate sector-specific λi.
We describe these and other extensions in Section 5.4.

Figure 4. Optimal R&D Allocations in Different Countries
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Notes. This figure shows the optimal R&D allocation across 20 3-digit IPC classes with the most patents for the
five economies that produced the most patents in 2010–2014. Optimal allocations are calculated using our baseline
calibration ρ = 5%,λ = 0.17. Sectors are sorted by the optimal allocation for the U.S.,γUS .

Figure 4 plots the optimal R&D allocation γ for the five economies that produced the most
patents in 2010–2014. For visual clarity, we only show the top 20 3-digit IPC classes ranked by
total patent counts; these 20 classes account for 75% of all patents. The level of optimal R&D
resources is shown on the y-axis, and the x-axis represents IPCs (sorted by γUS).

For the U.S. (solid black line), the optimal allocation favors sectors with the highest innovation
centrality, as listed in Figure 2, such as medical science (A61), basic electric elements (H01, e.g.,

7One reason why our conclusions are robust to alternative values of ρ/λ is that, as discussed previously, an in-
crease in ρ/λ has the same implication for the optimal R&D allocation as an increase in a country’s reliance on foreign
knowledge. The substantial cross-country variation in foreign reliance (see Figure 3) dwarfs reasonable variation in
the calibration of ρ/λ. Hence, the qualitative cross-country differences in unilaterally optimal R&D allocations are
not sensitive to our calibration of ρ/λ.
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semiconductors), and computing devices (G06). The top 10 IPCs (out of 131) should receive about
a third of total U.S. R&D resources. The correlation between optimal U.S. R&D allocation and the
innovation centrality a is 0.75. The correlation is high because the U.S. has a self-contained in-
novation network with relatively few citations toward foreign patents; hence, its planner should
internalizemore knowledge spillovers. The correlation is not perfect since the planner also consid-
ers IPC’s importance for domestic production, encoded in the value-added share vector β, which
raises the optimal allocation of high-β sectors such as vehicles (B60).

Figure 4 also reveals cross-country variations in the unilaterally optimal R&D allocations.
Relative to the U.S., Germany and Japan should allocate more toward vehicles (B60); South Korea
should allocate more toward electric communication technique (H04); all four non-U.S. economies
should allocate less toward medical science (A61).

5.2 Innovation Allocation in the Data

We first present our model’s ability to fit R&D resource allocation in the U.S. The left panel of
Figure 5 shows the scatter plot of sectoral R&D expenditure (as a share of total R&D) against
the optimal R&D expenditure share γUS for the sample period 2010–2014. The linear fit (solid
line) is close to the 45-degree line (dashed) with a slope of 1.11 (t-statistic 7.64), indicating that
on average, sectors that should optimally receive more R&D resources do indeed receive more
R&D resources. In the right panel of Figure 5, we change the y-axis to sectoral patent output
as a share of total patent output; again, sectoral patent output aligns very well with γUS , with a
slope of 1.05 (t-statistic 8.20). To be clear, the strong alignment between real-world and optimal
R&D allocations does not imply the U.S. allocates R&D optimally: there is substantial residual
variation in R&D allocations as they disperse around the 45-degree line. The vertical distance
between each observation and the 45-degree line measures the amount of R&D resources that
need to be reassigned to achieve the optimal allocation. We quantitatively assess the welfare
gains from adopting the optimal R&D allocation in Section 5.3 below.8

There is substantial cross-country heterogeneity in R&D resource allocations. Figure 6 shows
scatter plots of sectoral R&D expenditure shares against the unilaterally optimal R&D allocations
for ten countries that filed the most patents in 2010–2014. Sectoral R&D expenditure correlates
strongly with the optimal R&D allocations for the five countries shown in the top row (U.S., Japan,

8A potential concern is that Figure 5 picks up a mechanical relationship: it may be that sectors with more re-
sources produce more patents and citations, thereby appearing to be more central in the innovation network Ω—in
other words, allocated resources reversely affect sectoral centrality. To argue against this possibility, we reproduce
our empirical exercises using the innovation network constructed using citations from Japanese patents to Japanese
patents. Because Japan’s innovation network is self-contained and has few citations toward foreign patents (Figure
3), the network is by construction independent of U.S. R&D. All of our findings continue to hold, suggesting that in-
novation centrality a—which correlates strongly with the U.S. optimal R&D allocation γUS—indeed picks up sectoral
importance in the innovation network rather than representing historical R&D expenditures.
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Figure 5. U.S. Actual R&D Allocation vs. Optimal AllocationγUS

Figure 4. Optimal R&D Allocations for Different Countries
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Figure 5. U.S. Sectoral R&D and Patent Output Align Well With γUS in 2010
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Notes. This figure shows scatter plots of real-world sectoral R&D expenditure shares (left panel) and patent output
shares (right panel) against optimal R&D allocation shares, γUS , for the U.S. in 2010-2014. The solid line is the linear
fit; the dashed line is the 45-degree line. For visual clarity, we exclude 3 outlier sectors (out of 131) that account for
>7.5% of R&D shares or patent output from the scatter plots, but all sectors are used for the linear fit.

China, South Korea, and Germany), and the relationship is weaker for the five economies at the
bottom (Russia, France, U.K., Canada, and Netherlands). As we have noted, a line-of-fit with a
slope of 1 does not imply resources are allocated optimally; nevertheless, Figure 5 suggests that
on average, more resources need to be reallocated to achieve optimality in the five economies in
the bottom row. These results are robust to using patent output shares and R&D shares reported
in OECD ANBERD database as measures of cross-sector R&D resource allocation (Figures A.13
and A.15 in the Online Appendix), suggesting that our results are not driven by the coverage and
quality of our R&D expenditure variable. Figure A.12 in the Online Appendix shows that very
similar patterns hold in the years 2000 and 2005.

5.3 Welfare Gains from Improving R&D Allocation

We now quantify the potential welfare gains from improving R&D allocation, using the welfare
formula in Proposition 7:

lnL (b, ξ) = ψ
λ

ρ
ξ︸︷︷︸

self sufficiency

×γ ′ (lnγ − ln b)︸ ︷︷ ︸
R&D misallocation

, (31)

where lnL (b, ξ) is the consumption-equivalent welfare gains in logs, b is the empirical R&D

allocation vector, γ is the optimal R&D allocation vector, and ξ ≡ ρ
ρ+λ

β′
(
I − Ω◦X

1+ρ/λ

)−1

1 is the
scalar measure of R&D self-sufficiency, which increases in domestic citation shares xij . ψ captures
the elasticity of productivity to knowledge stock and thus proportionally controls the welfare
impact of R&D allocation. It is an additional parameter to be calibrated. We specify ψ = 0.06,
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Figure 6. Actual R&D Allocation vs. Optimal Allocation Across Countries
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Notes. This figure shows scatter plots of sectoral R&D expenditure shares against the optimal sectoral share of R&D
allocation for the top ten innovative countries (in terms of patent output) using data from 2010–2014. The solid line
is the linear fit; the dashed line is the 45-degree line. For visual clarity, we exclude outlier sectors that account for
>7.5% of national R&D shares from the scatter plots, but all sectors are used for the linear fit.

which implies a semi-elasticity ( dgy/ d ln s̄ = ψλ =) 0.01 of BGP consumption growth rate to
the total stock of R&D resource, consistent with standard calibrations in the growth literature
(Akcigit and Kerr, 2018, Akcigit et al., 2021).

Equation (31) implies a natural decomposition when comparing across countries the potential
welfare gains from reallocating R&D: misallocation, measured as relative entropy from the actual
allocation b to the optimal γ (higher γ ′ (lnγ − ln b) means less efficient) and self-sufficiency (ξ).
Holding an economy’s R&D self-sufficiency constant, worse misallocation implies larger potential
gains; and, as an economy benefits more from foreign knowledge spillovers (lower ξ), domestic
R&D misallocation becomes less consequential for consumer welfare.

Figure 7 shows the degree ofmisallocation and the size of the potential welfare gains fromR&D
reallocation for the 19 economies that filed themost patents during 2010–2014. Because of the EU’s
high degree of economic integration, we also aggregate R&D from all EU countries and calculate
the allocative efficiency of the EU as a single, integrated economy, which is listed as the 20th
economy in Figure 7. The dark bars represent the misallocation term (left Y-axis). Among high-
income countries, Japan has the most efficient R&D allocation, followed by other top-patenting
countries like the U.S., Germany, and South Korea. Among high-income economies in Europe,
Switzerland also has a higher allocative efficiency compared to its peers. When evaluated as a
single integrated economy, the EU’s allocative efficiency is comparable to Italy’s and is marginally
better than France’s.

The light grey bars in Figure 7 represent the potential welfare gains of reallocating R&D op-
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Figure 7. R&D Allocative Efficiency and Potential Welfare Gains Across Countries
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Notes. This table shows the level of R&D misallocation (dark bars) and the potential welfare gains (light grey bars)
from adoption optimal R&D allocation across 19 innovative countries with the highest patent outputs in our sample,
and the integrated economy of the European Union, using 2010-2014 data. The calculation focuses on R&D in top 50
IPC classes by total patents.

timally (right Y-axis). By our welfare accounting formula (31), the welfare gain is proportional
to the misallocation term times the R&D self-sufficiency measure ξ. For the two economies with
self-contained innovation networks, namely the U.S. and Japan, ξ is closer to one, so the overall
welfare gains (grey bars) are closer in magnitude to the misallocation terms (dark bars). By con-
trast, the welfare gains are comparatively lower than the corresponding misallocation terms in all
other economies, as their domestic R&D misallocation is less consequential for economic growth
because of their dependence on foreign knowledge spillovers.

Table 4 shows the size of the potential welfare gains from adopting the optimal allocation,
evaluated using R&D allocation measured in the years 2000, 2005, and 2010. For the year 2010,
adopting the optimal allocation in Japan, which has the most efficient R&D allocation in our sam-
ple, could lead to welfare improvements equivalent to raising consumption along the entire path
by 5.64%. The potential welfare gains for the U.S. are 8.04% in consumption-equivalent terms,9

which is above the average in our sample. Russia has the highest potential gains, equivalent to
16.76% consumption gains after adopting the optimal allocation. Moving to the country-specific
optimal R&D allocation in 2010 would generate consumption-equivalent welfare gains of 5.60% in
China, 4.24% in South Korea, and 4.09% in Germany. For most economies, the size of the potential
welfare gains has been stable since the 2000s.

It is important to note that a more allocatively efficient country is not necessarily more inno-
9In Section B.6 of the Online Appendix, we derive the optimal R&D allocation and the welfare cost formula when

the domestic planner takes into account how domestic R&D affects foreign variables. We find very similar welfare
gains under that specification.
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vative in absolute terms. Instead, the extent of misallocation reflects the distance from actual R&D
allocation (b) to each country’s own efficient benchmark (γ), and our welfare calculations reflect
how much each country could gain when moving to that benchmark, holding all other economic
conditions fixed.

Table 4. Percentage (%) Consumption Gains By Moving to Each Country’s Optimal R&D AllocationTable 4. Country-Level Welfare Loss

US Japan China South Korea Germany Russia France UK Canada Netherlands

2000 9.98 4.24 5.78 5.25 4.79 13.70 5.17 7.55 7.22 6.70
2005 8.85 5.04 5.26 3.92 4.11 11.18 5.38 8.17 7.29 5.45
2010 8.04 5.64 5.60 4.24 4.09 16.76 5.38 8.15 6.21 10.22

Sweden Switzerland Italy Finland India Australia Belgium Austria Denmark European Union

2000 6.65 5.18 5.04 5.39 10.91 5.72 5.72 6.52 5.93 5.91
2005 5.53 4.10 4.57 5.63 8.33 4.19 5.62 8.50 5.30 5.04
2010 6.20 3.67 4.40 7.95 6.21 7.30 6.73 9.87 5.39 5.76

Figure 8. Source of Misallocation
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Notes. This table shows the consumption-equivalent welfare gains when each economy moves its optimal R&D
allocation, calculated using the formula (31) under our baseline calibration {ρ, λ, ψ} = {0.05, 0.17, 0.06}. Section
5.4 discusses robustness under different parameter values.

5.4 Additional Results, Robustness Checks, and Sensitivity Analysis

In Online Appendix E.4, we present additional results and robustness checks on our quantitative
analysis of R&D reallocation. Note that our R&D allocation accounting exercise rely on informa-
tion on the network Ω, the value of the effective discount rate ρ/λ, and the elasticity of produc-
tivity to knowledge ψ. In the baseline specification, we compute entry ωij of Ω as the share of
all citations from i that are towards j ( Citesi→j∑

k Citesi→k
), and we set {ρ, λ, ψ} = {0.05, 0.17, 0.06}. For

expositional simplicity, the baseline results focus on top innovative sectors and in the most recent
time period. We now tackle the robustness along all these dimensions in the Online Appendix.

Table A.20 shows that the optimal R&D allocation γ is highly stable (by both Pearson’s cor-
relation and Spearman’s rank correlation) across the following alternative specifications of the
innovation network Ω and parameterizations of ρ and λ.10

As discussed in Section 4.1, cross-sector knowledge spillovers are inherently difficult to cap-
ture. We consider several alternative specifications of Ω. In rows A1 and A2, we weigh each
citation linkage in Ω construction (24) by the quality of either the citing (row A1) or the cited
patent (row A2) measured using the total forward citations received by these patents. This way,
we over-weigh the citation linkage when the technologies involved are impactful. The innovation

10We do not report robustness results under alternative values of parameter ψ, as the parameter does not affect
the optimal allocation γ. The welfare impact of R&D allocation is directly proportional ψ, so our baseline results in
Table 4 can be directly rescaled for different values of ψ.
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networks in these extensions therefore weigh more heavily the spillovers among major patents.
In row A3, we construct ωij ∝ Citesi→j to scale directly with the total citations totally across
or ij-pairs (rather than normalized by the citations from i), and we choose the proportionality
constant so that the spectral radius of Ω is equal to one, ensuring endogenous growth as in our
baseline model (see Section B.9 for the theoretical discussion of this specification).

In rows B1 to B7, we consider a range of alternative values for ρ/λ and show that the optimal
R&D allocation correlates highly with our baseline specification. We also consider a specification
with sector-specific λi (row C1). The optimal R&D allocation in this environment is derived in
Online Appendix B.8; the heterogeneity in λi is measured using variations in each sector’s median
ROA (return on assets) in our firm-level datasets, with themappingmotivated by the decentralized
economy constructed in Online Appendix B.4.

Finally, one related concern is that citations are only noisy proxies of knowledge spillovers,
and thus the innovation network can only be noisy measured. While we cannot purge the mea-
surement error, we conduct the robustness check in reverse and show our quantitative analysis is
robust to introducing additional, simulated random errors to Ω, shown in rows D1 to D10.

5.5 How Does R&D Allocation Compare with the Optimal in the U.S.?

We here provide some descriptive evidence for how the actual R&D allocation compares with the
optimal in the U.S. Figure 8 plots the log-ratio between the actual R&D expenditure share in the
U.S. and the optimal allocation for the 30 largest 3-digit IPC classes by patent output. Altogether,
these 30 IPC classes (out of 131) account for 84% of patents and 90% of R&D expenditures in the U.S.
Though providing a full set of policy recommendations on R&D allocation is beyond the scope of
this paper, this figure conveys several noteworthy messages. Electric communication technique
(H04; e.g., telephonic communication, wireless communication), which ranks 4th in centrality
(Figure 2) and 9th in the optimal allocation γ (Figure 4), is over-invested. Meanwhile, within
the same broad IPC class H (electricity), the more central and fundamental class Basic Electric
Elements (H01; e.g., semiconductor devices) is underinvested. In terms of its economic magnitude,
−0.60, our log-ratio scale suggests that the real allocation is 55% (exp(−0.60)) of the optimal level;
in other words, R&D in semiconductor devices is underfunded by about 45%. This supports the
recent U.S. initiatives (such as the CHIPS For America Act) to invest in the semiconductor industry.
Another observation is that the underinvested group (right end of the graph) over-represents IPC
classes related to technologies often termed as “green innovation” (see Cohen, Gurun and Nguyen
2020) that can help reduce pollution and the negative consequences of resource exploitation. For
instance, one of the most underinvested IPC class in the figure, B01, covers subclasses on waste
management, alternative energy production, and environmental management. Figure A.17 of the
Online Appendix further demonstrates the R&D allocative efficiency in the US across 3-digit IPC
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classes within each broad 1-digit IPC technology class.

Figure 8. U.S. R&D Misallocation in the Top 30 Innovative IPC Classes

Table 4. Country-Level Welfare Loss

US Japan China South Korea Germany Russia France UK Canada Netherlands

2000 9.98 4.24 5.78 5.25 4.79 13.70 5.17 7.55 7.22 6.70
2005 8.85 5.04 5.26 3.92 4.11 11.18 5.38 8.17 7.29 5.45
2010 8.04 5.64 5.60 4.24 4.09 16.76 5.38 8.15 6.21 10.22

Sweden Switzerland Italy Finland India Australia Belgium Austria Denmark European Union

2000 6.65 5.18 5.04 5.39 10.91 5.72 5.72 6.52 5.93 5.91
2005 5.53 4.10 4.57 5.63 8.33 4.19 5.62 8.50 5.30 5.04
2010 6.20 3.67 4.40 7.95 6.21 7.30 6.73 9.87 5.39 5.76

Figure 8. Source of Misallocation
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Notes. This figure plots the level of misallocation of the top 30 innovative IPC classes, ranked using total patent
output. The level of misallocation is calculated as ln b − lnγ. Positive bars (left end) imply over-investment, and
negative bars imply underinvestment.

5.6 Innovation Hubs

What explains cross-country differences in R&D allocative efficiency? We do not have defini-
tive answers, but we can present a conjecture with some empirical support: firms whose R&D
activities span multiple sectors and technology classes allocate their resources in ways that may
resemble the social planner’s. Because these firms’ R&D activities build on their own prior in-
novations, they may partially internalize knowledge spillovers through the innovation network.
Notable examples include top innovating firms such as IBM, Samsung, Sony, and Siemens, which
are termed “innovation hubs.”

Our hypothesis is supported empirically by a strong negative relationship between the pres-
ence of such firms and the degree of R&Dmisallocation in each country. Figure 9, Panel (a) shows
the share of patents in 2010–2014 that are filed by the top 10% of innovating firms in each country.
The figure shows that R&D activities are more concentrated in Japan, the U.S., and Sweden, as the
top 10% of innovating firms in these economies account for close to 90%, 80%, and 70% of patents,
respectively. By contrast, R&D activities are least concentrated in Spain, India, and Australia.

Panel (b) of Figure 9 plots the misallocation measure (γ ′ (lnγ − ln b)) against the share of
patents accounted for by the top 10% of innovating firms. We find a strongly negative relation-

41



Figure 9. Innovation Hubs and R&D Allocative Efficiency

(a) Share of Patents from Top Innovative Firms
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2. Appendix

Table A.18. Unilaterally Optimal R&D Allocations Differ Significantly Across Countries

Countries US Japan China South Korea Germany Russia France UK Canada Netherlands EU

US 0.97 0.90 0.93 0.95 0.84 0.94 0.94 0.92 0.95 0.95
Japan 0.91 0.93 0.94 0.96 0.87 0.94 0.94 0.93 0.94 0.96
China 0.87 0.93 0.95 0.91 0.91 0.91 0.90 0.91 0.90 0.94
South Korea 0.85 0.89 0.84 0.92 0.83 0.90 0.90 0.88 0.89 0.92
Germany 0.77 0.89 0.79 0.82 0.85 0.97 0.96 0.94 0.97 0.99
Russia 0.70 0.76 0.86 0.60 0.57 0.84 0.82 0.90 0.86 0.86
France 0.81 0.89 0.87 0.73 0.73 0.76 0.98 0.94 0.97 0.98
UK 0.84 0.89 0.86 0.73 0.73 0.76 0.99 0.94 0.97 0.98
Canada 0.78 0.88 0.88 0.72 0.71 0.84 0.97 0.96 0.95 0.95
Netherlands 0.83 0.89 0.87 0.74 0.72 0.76 0.98 0.97 0.96 0.97
EU 0.87 0.96 0.91 0.82 0.90 0.74 0.95 0.95 0.93 0.94

Table A.19. Unilaterally Optimal R&D Allocations for US is Highly Correlated over Time

Time Period 2020 2010 2000 1990 1980

2020 1.00 0.99 0.98 0.98
2010 0.99 0.99 0.98 0.98
2000 0.97 0.97 1.00 0.99
1990 0.96 0.94 0.99 1.00
1980 0.94 0.93 0.99 1.00

5

Notes. Panel (a) of this figure shows the share of patents filed by the top 10% of innovative firms in each country
between 2010–2014 (innovative firms are ranked using patent output). Panel (b) plots the misallocation measure
against the measure of concentration in Panel (a).

ship (slope -1.4, t-statistic -2.1). This evidence suggests that the market failure in R&D resource
allocation could be partially mitigated if innovation hub firms thrive.

6 Conclusion

We study optimal cross-sector allocation of R&D resources in an endogenous growth model fea-
turing an innovation network. We provide closed-form solutions for the optimal path of R&D
resource allocation, and we show a planner valuing long-term growth (i.e., with low discount
rates) should allocate more R&D toward key sectors that are central in the innovation network,
but the incentive is muted in open economies that benefit more from foreign knowledge spillovers.
We show the relative entropy of actual R&D allocation from the optimal allocation maps into a
sufficient statistic for the potential welfare gains from reallocating R&D optimally.

To empirically evaluate R&D allocative efficiency across countries and over time, we build a
global innovation network based on over 30 million global patents and compile comprehensive
data on sectoral production, final use, and, importantly, R&D resource allocation for major in-
novative economies. We find that our model-implied optimal R&D resource allocation explains
real allocations in the data, particularly for countries generally perceived as innovative, such as
the U.S., Japan, Germany, and more recently China and South Korea. However, there remains
significant room to improve. Improving R&D allocations could generate substantial welfare im-
provements across the globe. For the U.S., reallocating R&D resources to Japan’s efficiency level
would increase consumption-equivalent welfare by 8% in 2010. We believe our framework can be
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adopted to explore future questions about R&D allocation.

References
Abel, Andrew B., “The Effects of a Baby Boom on Stock Prices and Capital Accumulation in the

Presence of Social Security,” Econometrica, 2003.
Acemoglu, Daron, Ufuk Akcigit, and William Kerr, “Networks and the Macroeconomy: An

Empirical Exploration,” June 2015, pp. 273–335.
, , and William R Kerr, “Innovation network,” Proceedings of the National Academy of Sci-
ences, 2016, 113 (41), 11483–11488.
, , Nicholas Bloom, andWilliamR. Kerr, “Innovation, reallocation and growth,” American
Economic Review, nov 2018, 108 (11), 3450–3491.
, VascoM.Carvalho, AsumanOzdaglar, andAlirezaTahbaz-Salehi, “TheNetworkOrigins
of Aggregate Fluctuations,” Econometrica, 2012, 80 (5), 1977–2016.

Aghion, Philippe, Nick Bloom, Richard Blundell, Rachel Griffith, and Peter Howitt,
“Competition and innovation: An inverted-U relationship,” Quarterly Journal of Economics,
2005, 120 (2), 701–728.

Akcigit, Ufuk and William R Kerr, “Growth through heterogeneous innovations,” Journal of
Political Economy, 2018, 126 (4), 1374–1443.
, Douglas Hanley, and Nicolas Serrano-Velarde, “Back to basics: Basic research spillovers,
innovation policy, and growth,” Review of Economic Studies, 2021, 88 (1), 1–43.
, Sina Ates, and Giammario Impullitti, “Innovation and Trade Policy in a GlobalizedWorld,”
Working paper, 2022.

Atkeson, Andrew and Ariel Burstein, “Aggregate implications of innovation policy,” Journal
of Political Economy, 2019, 127 (6), 2625–2683.

Baqaee, David Rezza, “Cascading Failures in Production Networks,” Econometrica, November
2018, 86.
and Emmanuel Farhi, “The Macroeconomic Impact of Microeconomic Shocks: Beyond Hul-
ten’s Theorem,” Econometrica, 2019, 87.
and , “Productivity and Misallocation in General Equilibrium,” The Quarterly Journal of Eco-
nomics, February 2020, 135 (1), 105–163.

Berkes, Enrico, Kristina Manysheva, and Marti Mestieri, “Global Innovation Spillovers and
Productivity: Evidence from 100 Years of World Patent Data,” CEPR Discussion Paper, 2022.

Bloom, Nicholas, Charles I Jones, John Van Reenen, and Michael Webb, “Are ideas getting
harder to find?,” American Economic Review, 2020, 110 (4), 1104–44.
, John Van Reenen, and Heidi Williams, “A toolkit of policies to promote innovation,” Jour-
nal of Economic Perspectives, 2019, 33 (3), 163–84.
, Mark Schankerman, and JohnVanReenen, “Identifying technology spillovers and product
market rivalry,” Econometrica, 2013, 81 (4), 1347–1393.

Buera, Paco and Ezra Oberfield, “The Global Diffusion of Ideas,” Econometrica, 2020.
Caballero, Ricardo J. and Adam B. Jaffe, “How High Are the Giants’ Shoulders: An Empirical

Assessment of Knowledge Spillovers and Creative Destruction in aModel of Economic Growth,”
NBER Macroeconomics Annual, 1993, 8, 15–74.

Cai, Jie and Can Tian, “Innovation and Endogenous Knowledge Network Dynamics,” Working
paper, 2021.
and Nan Li, “Growth Through Intersectoral Knowledge Linkages,” Review of Economic Studies,
2019.
, , and Anna Maria Santacreu, “Knowledge Diffusion, Trade and Innovation across Coun-
tries and Sectors,” AEJ: Macroeconomics, 2022, 14 (1), 104–45.

43



Carvalho, Vasco, “Aggregate fluctuations and the network structure of intersectoral trade,”Work-
ing paper, 2010.
andNico Voigtlaender, “Input Diffusion and the Evolution of Production Networks,”Working
paper, 2015.

Chaney, Thomas, “The Gravity Equation in International Trade: An Explanation,” Journal of
Political Economy, 2018.

Coe, David T. and Elhanan Helpman, “International R&D spillovers,” European Economic Re-
view, 1995.
, , and Alexander W. Hoffmaister, “International R&D Spillovers and Institutions,” Euro-
pean Economic Review, 2009.

Cohen, Lauren, Umit G Gurun, and Quoc H Nguyen, “The ESG-innovation disconnect: Evi-
dence from green patenting,” 2020.

David, Joel and Venky Venkateswaran, “The Sources of Capital Misallocation,” American Eco-
nomic Review, 2019.

Eaton, Jonathan and Samuel Kortum, “International Technology Diffusion: Theory and Mea-
surement,” International Economic Review, 1999.
and , “Innovation, Diffusion, and Trade,” NBER Working paper, 2006.

Gabaix, Xavier, “The Granular Origins of Aggregate Fluctuations,” Econometrica, 2011.
Galeotti, Andrea, Ben Golub, and Sanjeev Goyal, “Targeting Interventions in Networks,”

Econometrica, 2020.
Garcia-Macia, Daniel, Chang-Tai Hsieh, and Peter J. Klenow, “How Destructive Is Innova-
tion?,” Econometrica, 2019, 87 (5), 1507–1541.

Grassi, Basile, “IO in I-O: Size, Industrial Organization, and the Input-Output Network Make a
Firm Structurally Important,”Working Paper, 2017.

Griffith, Rachel, Rupert Harrison, and John Van Reenen, “How special is the special rela-
tionship? Using the impact of US R&D spillovers on UK firms as a test of technology sourcing,”
American Economic Review, 2006, 96 (5), 1859–1875.

Guillard, Charlotte, Ralf Martin, Pierre Mohnen, Catherine Thomas, and Verhoeven
Dennis, “Efficient industrial policy for innovation: standing on the shoulders of hidden giants,”
NBER Working Paper, 2021.

Hall, Bronwyn H, Adam Jaffe, and Manuel Trajtenberg, “Market value and patent citations,”
RAND Journal of Economics, 2005, pp. 16–38.

Hercowitz, Zvi andMichael Sampson, “Output Growth, the RealWage, and Employment Fluc-
tuations,” American Economic Review, 1991.

Hopenhayn, Hugo and Francesco Squintani, “On the Direction of Innovation,” Journal of
Political Economy, 2021.

Hsieh, Chang-Tai and Peter Klenow, “Misallocation and Manufacturing TFP in China and
India,” Quarterly Journal of Economics, 2009.
, Erik Hurst, Chad Jones, and Pete Klenow, “The Allocation of Talent and U.S. Economic
Growth,” Econometrica, 2019.

Huang, Jingong and Yves Zenou, “Key Sectors in Endogeneous Growth,”Working paper, 2020.
Hulten, Charles R., “Growth Accounting with Intermediate Inputs,” The Review of Economic
Studies, 10 1978, 45 (3), 511–518.

Jaffe, Adam B., Manuel Trajtenberg, and Rebecca Henderson, “Geographic localization of
knowledge spillovers as evidenced by patent citations,” Quarterly Journal of Economics, 1993,
108 (3), 577–598.

Jones, Benjamin, “The Burden of Knowledge and the Death of the Renaissance Man: Is Innova-
tion Getting Harder?,” Review of Economic Studies, 2009.
, “Science and Innovation: the under-fueled engine of prosperity,” Aspen Economic Strategy
Group, 2021.

44



Jones, Benjamin F. and Lawrence H. Summers, “A Calculation of the Social Returns to Inno-
vation,” in Benjamin F. Jones and Austan Goolsbee, eds., Innovation and Public Policy, NBER,
forthcoming.

Jones, Chad, “The Past and Future of Economic Growth: A Semi-Endogenous Perspective,” An-
nual Review of Economics, 2022.

Jones, Charles I., “Intermediate Goods andWeak Links in the Theory of EconomicDevelopment,”
American Economic Journal: Macroeconomics, April 2011, 3 (2), 1–28.
, “Misallocation, Economic Growth, and Input-Output Economics,” Advances in Economics and
Econometrics, 2013, 2.
and John Williams, “Measuring the Social Return to R&D,” Quarterly Journal of Economics,
1998.

Keller, Wolfgang, “International Technology Diffusion,” Journal of Economic Literature, 2004.
Kleinman, Benny, Ernest Liu, and Stephen Redding, “International Friends and Enemies,”
Working Paper, 2022.

Koenig, Michael, Michael Zheng Song, Kjetil Storesletten, and Fabrizio Zilibotti, “From
Imitation to Innovation: Where Is All that Chinese R&D Going?,” Econometrica, forthcoming.

Kogan, Leonid, Dimitris Papanikolaou, Amit Seru, and Noah Stoffman, “Technological
innovation, resource allocation, and growth,” Quarterly Journal of Economics, 2017, 132 (2), 665–
712.

Lim, Kevin, “Endogenous Production Networks and the Business Cycle,”Working Paper, 2018.
Liu, Ernest, “Industrial Policies in Production Networks*,” The Quarterly Journal of Economics,

November 2019, 134 (4), 1883–1948.
and Aleh Tsyvinski, “Dynamical Structures and Spectral Properties of Input-Output Net-
works,” Working Paper, 2022.

Lucking, Brian, Nicholas Bloom, and John Van Reenen, “Have R&D Spillovers Changed?,”
NBER Working Paper, 2018.

Lybbert, Travis J and Nikolas J Zolas, “Getting patents and economic data to speak to each
other: An algorithmic links with probabilities approach for joint analyses of patenting and
economic activity,” Research Policy, 2014, 43 (3), 530–542.

Ma, Song, “The life cycle of corporate venture capital,” Review of Financial Studies, 2020, 33 (1),
358–394.
, “Technological Obsolescence,”Working Paper, 2021.

Machin, Stephen and John Van Reenen, “Technology and changes in skill structure: evidence
from seven OECD countries,” The quarterly journal of economics, 1998, 113 (4), 1215–1244.

Manski, Charles F, “Identification of endogenous social effects: The reflection problem,” Review
of Economic Studies, 1993, 60 (3), 531–542.

Melitz, Marc and Stephen Redding, “Trade and Innovation,” The Economics of Creative Destruc-
tion, Festschrift Volume in honor of Philippe Aghion and Peter Howitt, 2021.

Ngai, L. Rachel and RobertoM. Samaniego, “Accounting for research and productivity growth
across industries,” Review of Economic Dynamics, 2011.

Oberfield, Ezra, “A Theory of Input-Output Architecture,” Econometrica, March 2018, 86.
Restuccia, Diego and Richard Rogerson, “Policy distortions and aggregate productivity with

heterogeneous establishment,” Review of Economic Dynamics, 2008.
Santacreu, Anna Maria, “Innovation, Diffusion, and Trade: Theory and Measurement,” Journal

of Monetary Economics, 2015.
Taschereau-Dumouchel, Mathieu, “Cascades and Fluctuations in an Economywith an Endoge-

nous Production Network,”Working Paper, 2020.
Thomson, Russell, “The effectiveness of R&D tax credits,” Review of Economics and Statistics,
2017, 99 (3), 544–549.

Timmer, M. P., E. Dietzenbacher, B. Los, R. Stehrer, and G. J. de Vries, “An Illustrated User

45



Guide to theWorld Input-Output Database: the Case of Global Automotive Production,” Review
of International Economics, 2015.

vom Lehn, Christian and Thomas Winberry, “The Investment Network, Sectoral Comove-
ment, and the Changing U.S. Business Cycle,” Quarterly Journal of Economics, 2022.

Wilson, Daniel J, “Beggar thy neighbor? The in-state, out-of-state, and aggregate effects of R&D
tax credits,” The Review of Economics and Statistics, 2009, 91 (2), 431–436.

46



Online Appendix (For Online Publication Only)

Table of Contents

Section A: Proofs

A.1 Proof of Lemma 1: Optimal Labor Allocation
A.2 Proof of Proposition 1: Optimal R&D Allocation in the Baseline Model
A.3 Proof of Lemma 2: Economic Growth Rate Along a Balanced Growth Path
A.4 Proof of Proposition 2: limρ/λ→0 γ = β, limρ/λ→∞ γ = a

A.5 Proof of Proposition 3: Welfare Impact of R&D Reallocation
A.6 Proof of Proposition 4: Consumption-Equivalent Welfare Gains from Optimal R&D
A.7 Proof of Proposition 5: General Functional Forms and Endogenous Innovation Network
A.8 Proof of Proposition 6: Optimal R&D in the Presence of Foreign Spillovers
A.9 Proof of Proposition 7: Welfare Impact of R&D in the Presence of Foreign Spillovers

Section B: Theoretical Extensions

B.1 Three-Sector Example
B.2 Embedding Input-Output Linkages into Production Functions
B.3 Semi-Endogenous Growth
B.4 An Illustrative Decentralized Equilibrium
B.5 Constrained Optimal R&D Allocations
B.6 Optimal R&D Allocation in Large Open Economies
B.7 General Functional Forms and Endogenous Innovation Network with Foreign Spillovers
B.8 Sector-Specific λi’s
B.9 Innovation Network with Heterogeneous Row-Sums
B.10 Resource Mobility Between Production and R&D

Section C: Details on Data Construction

C.1 U.S. Innovation Data
C.2 Global Innovation Data
C.3 Connecting Innovation Data with Sectoral Data
C.4 Constructing Cross-Sector R&D Allocation Data

Section D: Cross-checking Google Patents with PATSTAT

D.1 Basic Data Structure and Coverage
D.2 Identifying Granted Patents
D.3 Patent Family
D.4 Robustness of Results Using Google Patents and PATSTAT

Section E: Supplementary Results

E.1 Innovation Networks Are Stable Over Time and Across Countries
E.2 Knowledge Spillovers Through Innovation Networks—Robustness
E.3 Using R&D Tax Credit as an Instrument for Upstream R&D
E.4 Additional Results on R&D Misallocation

A1



A Proofs

A.1 Proof of Lemma 1: Optimal Labor Allocation
The planner’s problem is

V ∗ ({qi0}) ≡ max
{ℓit,sit}

∫ ∞

0

e−ρt
K∑

i=1

βi ln yit dt,

subject to constraints (3), (4), (5), and (6). Substituting using (3) and (4), the objective can be
re-written as

V ∗ ({qi0}) ≡ max
{ℓit,sit}

∫ ∞

0

e−ρt
K∑

i=1

βi ln q
ψ
itℓit dt.

The FOC with regard to ℓit gives: βiℓit =
βj
ℓjt
. Therefore, for all t, ℓit = βiℓ̄ for each sector i.

A.2 Proof of Proposition 1: Optimal R&D Allocation in the Baseline
Model

The social planner’s problem is

max
{γt} s.t. γ′t1=1∀t

∫ ∞

0

e−ρtβ′ ln qt dt

s.t. d ln qt/dt = λ · (lnη + ln s̄+ lnγt + (Ω− I) ln qt) ,

The control variable is γt and the state variable is qt. Denote the co-state variables as µt. The
current-value Hamiltonian writes

H(γt, qt,µt, ζ) = β′ ln qt + λµ′
t (lnη + ln s̄+ lnγt + (Ω− I) ln qt) + ζ(1− γ ′

t1).

For notational simplicity we suppress dependence on time for the control, state, and co-state
variables:

H({γi}, {qi}, {µi}, ζ, t) =
∑

i

βi ln qi + ζ(1−
∑

i

γi)

+λ
∑

i

µi

(
ln ηi + ln s̄+ ln γi +

∑

j

ωij ln qj − ln qi

)

By the maximum principle

Hγi = 0 ⇐⇒ λµi
γi

= ζ ∀i (A1)

Hln qi = ρµi − µ̇i ⇐⇒ βi − λµi + λ
∑

j

µjωji = ρµi − µ̇i (A2)
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First, we show that the transversality condition limt→∞ e−ρtH({γi}, {qi}, {µi}, ζ, t) = 0 im-
plies µ̇i = 0 for all i. It is then immediate that the optimal R&D allocation γ is time invariant.

Note the matrix formula of equation (A2) is

µ̇t = [(ρ+ λ)I − λΩ′]µt − β (A3)

Then

µt = e[(ρ+λ)I−λΩ
′]tµ0 −

(∫ t

0

e[(ρ+λ)I−λΩ
′](t−s) ds

)
β

= e[(ρ+λ)I−λΩ
′]tµ0 −

(
e[(ρ+λ)I−λΩ

′]t − I
)
[(ρ+ λ)I − λΩ′]

−1
β.

By transversality,

0 = lim
t→∞

e−ρtµt

= lim
t→∞

e[λ(I−Ω′)]t
[
µ0 − [(ρ+ λ)I − λΩ′]

−1
β
]
.

Hence it must be the case that µ0 = [(ρ+ λ)I − λΩ′]
−1

β. Plugging it to the explicit solution of
µt and then back to (A3), we can get µ̇t = 0. Hence µt and γt are time invariant.

We then can calculate γ. First obtain µ directly from FOC (A3):

(ρ+ λ)µ′
t

(
I − Ω

1 + ρ/λ

)
= β′ ⇐⇒ µ′

t =
1

ρ+ λ
β′
(
I − Ω

1 + ρ/λ

)−1

.

According to Equation (A1), γ is proportional to µ and subject to
∑

i γi = 1. We can then find γ:

γ ′ =
ρ

ρ+ λ
β′
(
I − Ω

1 + ρ/λ

)−1

,

since

ρ

ρ+ λ
β′
(
I − Ω

1 + ρ/λ

)−1

1 =
ρ

ρ+ λ
β′
( ∞∑

s=0

(
Ω

1 + ρ/λ

)s
1

)

=
ρ

ρ+ λ

∞∑

s=0

(
1

1 + ρ/λ

)s

= 1,

as desired.
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A.3 Proof of Lemma 2: EconomicGrowthRateAlong a BalancedGrowth
Path

Consider a BGP in which R&D allocation shares follow the vector b and the growth rate of sectoral
knowledge stock is time-invariant. The law of motion for stock vector is

d ln qt/dt = λ · (lnη + ln s̄+ ln b+ (Ω− I) ln qt).

Taking derivative with respect to time,

0 = λ (Ω− I)
d ln qt
dt

,

implying that the vector of sectoral growth rates d ln qt
dt

is the right-Perron eigenvector of Ω. Be-
causeΩ is a row-stochastic matrix, this implies that d ln qt

dt
must be a constant vector, meaning the

knowledge stock in every sector must grow at the same rate gq (b). Hence,

gq(b)1 =
d ln qt
dt

= λ · (lnη + ln s̄+ ln b+ (Ω− I) ln qt) . (A4)

Left-multiply by the centrality a′ of Ω on both sides:

gq (b) = a′ · g (b)1
= λ · (a′ lnη + a′ · 1 ln s̄+ a′ ln b+ a′(Ω− I) ln qt)

= λ · (a′ lnη + ln s̄+ a′ ln b)

= const+ λ · a′ ln b.

The third equation is based on the properties of the innovation centrality vector: a′ = a′Ω and∑K
i=1 ai = 1. That gy (b) = ψ · gq (b) is immediate from the production function yi = qψi ℓi.

A.4 Proof of Proposition 2

Starting from γ ′ = ρ
ρ+λ

β′
(
I − Ω

1+ρ/λ

)−1

, right-multiply both sides by ρ+λ
λ

(
I − Ω

1+ρ/λ

)
to get

γ ′
(
ρ+ λ

λ
I −Ω

)
=
ρ

λ
β′ ⇐⇒ γ ′ (I −Ω) +

ρ

λ
(γ ′ − β′) = 0′.

Taking the limit as ρ/λ → 0, γ ′ (I −Ω) → 0 implies γ → a; taking the limit as ρ/λ → ∞,
γ → β, as desired.

A.5 Proof of Proposition 3: Welfare Impact of R&D Reallocation
The law of motion for knowledge stock ln q under R&D allocation b is

d ln q

dt
= λ (lnη + ln s̄ · 1+ ln b+ (Ω− I) ln q)
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Let a denote the left-eigenvector centrality of Ω (normalized to sum to one). We separately an-
alyze a′ ln qt, i.e., the centrality-weighted average knowledge stock, and the deviation of knowl-
edge stock from this average, (I − 1a′) ln qt.11 We first show the former always grows at a con-
stant rate even away from a BGP, whereas the latter converges to a constant vector as the economy
converges to a BGP.

From the law of motion, we know

a′ d ln q

dt
= λ (a′ lnη + ln s̄′ · a′1+ a′ ln b+ a′ (Ω− I) ln q)

= λa′ (lnη + ln s̄ · 1+ ln b)

Hence, given time-invariant R&D allocation b, a′ ln qt always grows at a constant rate (and it
equals to the rate of growth along a BGP) and can be solved in closed-form:

a′ ln qt = a′ ln q0 + λa′ (lnη + ln s̄ · 1+ ln b) t

Note that a′1 = 1; hence (I − 1a′) (ln s̄ · 1) = 0. Let A ≡ 1a′. Note that the row-
stochastic matrix Ω represents a Markov chain, for which a is the stationary distribution, and
A ≡ lims→∞ Ωs. Also note that

(I −A) (Ω− I) = (Ω− I) (I −A)

= − (I −Ω+A) (I −A)

Left-multiply the law ofmotion by (I −A), substitute the above, and let l̃n qt ≡ (I −A) ln qt,
we get

dl̃n qt
dt

= λ (I −A) (lnη + ln b)− λ (I −Ω+A) l̃n qt

We can integrate the ODE system:

l̃n qt = e−λ(I−Ω+A)t

[
˜ln q0 + λ

∫ t

0

eλ(I−Ω+A)s (I −A) (lnη + ln b) ds

]

= e−λ(I−Ω+A)t˜ln q0 + (I −Ω+A)−1 (I − e−λ(I−Ω+A)t
)
(I −A) (lnη + ln b)

Which implies that there’s a closed-form solution for the sectoral knowledge stock along the entire
path of the economy:

ln qt = l̃n qt +A ln qt

= A ln q0 + λA (lnη + ln s̄ · 1+ ln b) t

+e−λ(I−Ω+A)t˜ln q0 + (I −Ω+A)−1 (I − e−λ(I−Ω+A)t
)
(I −A) (lnη + ln b)

Starting from the same initial knowledge stock q0 but with two different time-invariant R&D
11We separate these two objects because, the matrix (I −Ω) is not invertible, but (I −Ω+ 1a′) generically is.

The proof shown below utilizes the invertibility of (I −Ω+ 1a′) to solve for (I − 1a′) ln qt.
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allocations b̃ and b, we have the following difference in knowledge stock over time:

ln qt

(
b̃
)
− ln qt (b) = A ln qt

(
b̃
)
−A ln qt (b)

+l̃n qt

(
b̃
)
− l̃n qt (b)

=
[
Aλt+ (I −Ω+A)−1 (I − e−λ(I−Ω+A)t

)
(I −A)

] (
ln b̃− ln b

)

Note ∫ ∞

0

e−ρtλt dt = −1

ρ
e−ρtλt

∣∣∞
0
+

∫ ∞

0

1

ρ
e−ρtλ dt =

λ

ρ2

The difference in consumer welfare under two time-invariant paths of R&D allocations is

V
(
q0; {ℓt} , b̃

)
− V (q0; {ℓt} , b)

= ψβ′
∫ ∞

0

e−ρt
[
ln qt

(
b̃
)
− ln qt (b)

]
dt

= ψβ′
∫ ∞

0

e−ρt
[
Aλt+ (I −Ω+A)−1 (I − e−λ(I−Ω+A)t

)
(I −A)

]
dt
(
ln b̃− ln b

)

=
ψλ

ρ2
β′A

(
ln b̃− ln b

)

+ψβ′ (I −Ω+A)−1

[
1

ρ
I −

∫ ∞

0

(
e−((ρ+λ)I−λ(Ω−A))t

)
dt

]
(I −A)

(
ln b̃− ln b

)

= ψβ′
[
λ

ρ2
A+ (I −Ω+A)−1

[
1

ρ
I − 1

ρ+ λ

(
I − λ

ρ+ λ
(Ω−A)

)−1
]
(I −A)

](
ln b̃− ln b

)

= ψβ′
[
λ

ρ2
A+

1

ρ
(I −Ω+A)−1

[
λ

ρ+ λ
(I − (Ω−A))

(
I − λ

ρ+ λ
(Ω−A)

)−1
]
(I −A)

](
ln b̃− ln b

)

=
ψ

ρ
β′
[
λ

ρ
A+

λ

ρ+ λ

(
I − λ

ρ+ λ
(Ω−A)

)−1

(I −A)

](
ln b̃− ln b

)

=
ψ

ρ
β′ λ

ρ+ λ

(
I − λ

ρ+ λ
(Ω−A)

)−1 [(
I − λ

ρ+ λ
(Ω−A)

)
ρ+ λ

ρ
A+ (I −A)

](
ln b̃− ln b

)

=
ψ

ρ2
β′ λ

ρ+ λ

(
I − λ

ρ+ λ
(Ω−A)

)−1

[ρI + λA]
(
ln b̃− ln b

)

Note
(ρI + λA)−1 =

1

ρ

(
I − 1

1 + ρ/λ
A

)
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To see this,

(ρI + λA)
1

ρ

(
I − 1

1 + ρ/λ
A

)

=
1

ρ

(
ρI + λA− (ρI + λA)

1

1 + ρ/λ
A

)

= I +
1

ρ
(λA− λA)

= I

Hence,

V
(
q0; {ℓt} , b̃

)
− V (q0; {ℓt} , b)

=
ψ

ρ
β′ λ

ρ+ λ

((
I − 1

1 + ρ/λ
A

)[
I − λ

ρ+ λ
(Ω−A)

])−1 (
ln b̃− ln b

)

=
ψ

ρ
β′ λ

ρ+ λ

(
I − λ

ρ+ λ
(Ω−A)− 1

1 + ρ/λ
A

)−1 (
ln b̃− ln b

)

=
ψ

ρ
β′ λ

ρ+ λ

(
I − 1

1 + ρ/λ
Ω

)−1 (
ln b̃− ln b

)

=
ψλ

ρ2
γ ′
(
ln b̃− ln b

)
,

as desired.

A.6 Proof of Proposition 4: Consumption-EquivalentWelfareGains from
Adopting the Optimal R&D

For a given consumption path {yt}, the welfare gain under the alternative consumption path
{L · yt} is

∫
e−ρt lnL dt = lnL

ρ
. The result thus immediately follows Proposition 3.

A.7 Proof of Proposition 5: General Functional Forms and Endogenous
Innovation Network

Consider the economic environment outlined in Section 2.5, with preferences

∫∞
0
e−ρt lnY

({
qψitℓit

})
dt

and knowledge stock law of motion

d ln qit/ dt = f (ln (bits̄) + lnXi ({qjt})) ∀i,

where ℓit is the measure of production workers allocated to each variety in sector i at time t.

A7



Consider the economy initially at t = 0 in a BGP with R&D allocation b. Define

βi ≡
∂ lnY ({yjt})

∂ ln yit

∣∣∣
t=0
, ωij ≡





∂ lnXi({qkt})
∂ ln qjt

∣∣∣
t=0

if i ̸= j

1 + ∂ lnXi({qit})
∂ ln qit

∣∣∣
t=0

otherwise.

β ≡ [βi] and Ω ≡ [ωij] are the consumption and innovation spillover elasticities evaluated in
the initial BGP. Note that (1) Xi (·) being homogeneous-of-degree-zero with positive cross-sector
spillovers and (2) |∂ lnXi (·) /∂ ln qjt| ≤ 1∀i, j jointly imply that ωij ≥ 0 for all i, j. Let λ ≡ f ′ (·)
denote the slope of the function f , and define γ ′ = ρ

ρ+λ
β′
(
I − Ω

1+ρ/λ

)−1

.
We now derive the first-order welfare impact of perturbing R&D allocation. Let V (ln q0; ln b)

denote the welfare under log-R&D allocation ln b. Formally, we show that the Gateaux derivative
of welfare with respect to log R&D allocation ln b in the direction of h is

lim
α→0

V (ln q0; ln b+ αh)− V (ln q0; b)

α
=
ψλ

ρ2
γ ′h.

Given log-R&D allocation ln b+ αh, the law of motion for knowledge stock satisfies

d ln qt
dt

= f (ln b+ αh+ lnχ ({ln qt}))

∂2 ln qt
∂α∂t

= λh+ λ (Ω− I)
∂ ln qt
∂α

=⇒ ∂ ln qt
∂α

= (I −Ω)−1 [I − e−λ(I−Ω)t
]
h
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lim
α→0

V (ln q0; ln b+ αh)− V (ln q0; b)

α

=

∫
e−ρt

∂ lnY (ψ ln qt)

∂ ln qt

∂ ln qt
∂α

dt

= ψβ′ (I −Ω)−1

∫
e−ρt

[
I − e−λ(I−Ω)t

]
dth

= ψβ′ (I −Ω)−1

[
1

ρ
I −

∫
e−((ρ+λ)I−λΩ)t dt

]
h

= ψβ′ (I −Ω)−1

[
1

ρ
I − 1

ρ+ λ

(
I − λ

ρ+ λ
Ω

)−1
]
h

= ψβ′ (I −Ω)−1

[
1

ρ

(
I − λ

ρ+ λ
Ω

)
− 1

ρ+ λ
I

](
I − λ

ρ+ λ
Ω

)−1

h

=
ψ

ρ
β′ (I −Ω)−1

[
λ

ρ+ λ
I − λ

ρ+ λ
Ω

](
I − λ

ρ+ λ
Ω

)−1

h

=
ψλ

ρ2
ρ

ρ+ λ
β′
(
I − λ

ρ+ λ
Ω

)−1

h

=
ψλ

ρ2
γ ′h,

as desired.

A.8 Proof of Proposition 6: Optimal R&D in the Presence of Foreign
Spillovers

First, note that given output yt and the price of imports pft , consumption, export, and import must
solve

C̄∗
(
yt, p

f
t

)
≡ max

cdt ,c
f
t

C
(
cdt , c

f
t

)
s.t. yt − cdt = pft c

f
t . (A5)

Since C (·) features constant-returns-to-scale, we can re-write the maximized consumption ag-
gregator as C̄∗

(
yt, p

f
t

)
= ytC∗

(
pft

)
for some function C∗. Hence, for any qt, {ℓit} are chosen

to maximize flow output; thus the optimal worker allocation features ℓit/ℓ̄ = βi as in the closed
economy.

We next characterize the optimal R&D allocation. Let Θ ≡ Ω ◦X . Given the law of motion
for sectoral knowledge stock, we can solve for the evolution of knowledge stock in closed form
as a function of R&D allocation bt:

ln qt = eλ(Θ−I)t

[
ln q0 + λ

∫ t

0

e−λ(Θ−I)s
(
(Ω−Θ) ln qfs + lnη + ln s̄+ ln bs

)
ds

]
. (A6)
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The optimal R&D allocation is

{γt} = argmax
{bs}

∫ ∞

0

e−ρt ln C̄∗
(
yt ({bs}) , pft

)
dt

= argmax
{bs}

∫ ∞

0

e−ρt ln yt ({bs}) dt

= argmax
{bs}

∫ ∞

0

e−ρtβ′ ln qt ({bs}) dt

= argmax
{bs}

β′
∫ ∞

0

e−ρt
[
λ

∫ t

0

e−λ(I−Θ)(t−s) ln bs ds

]
dt.

The optimal R&D allocation therefore coincides with the solution to the following problem:

argmax
{bs}

∫ ∞

0

e−ρtβ′mt dt

s.t. ṁt = λ (Θ− I)mt + λ ln bt, m0 given,

which can be solved in closed form by forming the Hamiltonian, following a similar procedure as
in the proof for Proposition 1. The solution features

γ ′ = ξ−1 ρ

ρ+ λ
β′
(
I − Ω ◦X

1 + ρ/λ

)−1

, ξ ≡ ρ

ρ+ λ
β′
(
I − Ω ◦X

1 + ρ/λ

)−1

1,

as desired.

A.9 Proof of Proposition 7: Welfare Impact of R&D in the Presence of
Foreign Spillovers

Starting from an initial condition q0, a path of foreign knowledge and import prices
{
qft , p

f
t

}
,

and a path of worker allocation {ℓt}, the welfare differences between an economy with optimal
R&D allocation γ and an economy with time-invariant allocation b is

V (γ)− V (b) =

∫ ∞

0

e−ρt
[
ln C̄∗

(
yt (γ) , p

f
t

)
− ln C̄∗

(
yt (b) , p

f
t

)]
dt,

where C̄∗ is defined in (A5). Following the proof to Proposition 6, C̄∗
(
yt, p

f
t

)
= ytC∗

(
pft

)
; hence

the welfare differences can be re-written as

V (γ)− V (b) =

∫ ∞

0

e−ρt [ln yt (γ)− ln yt (b)] dt.

Since ln yt is additive in ψβ′ ln qt, we can re-write the welfare differences in terms of the dis-
counted integral of β-weighted differences in knowledge stock induced by the two different R&D
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allocation vectors. By (A6), we can re-write the welfare differences as

V (γ)− V (b) = ψβ′
∫ ∞

0

e−ρt
[
λ

∫ t

0

e−λ(I−Θ)(t−s) ds

]
dt (lnγ − ln b) ,

whereΘ ≡ Ω ◦X . To simplify the integral we follow the proof to Proposition 3:12

V (γ)− V (b) = ψβ′
∫ ∞

0

e−ρt
[
λ

∫ t

0

e−λ(I−Θ)(t−s) ds

]
dt (lnγ − ln b) ,

= ψβ′ (I −Θ)−1

(∫ ∞

0

e−ρt
[
I − e−λ(I−Θ)t

]
dt

)
(lnγ − ln b)

=
ψ

ρ
β′ (I −Θ)−1

(
I − ρ

ρ+ λ

(
I − 1

1 + ρ/λ
Θ

)−1
)
(lnγ − ln b)

=
ψλ

ρ2
ρ

ρ+ λ
β′
(
I − 1

1 + ρ/λ
Θ

)−1

(lnγ − ln b)

=
ψλ

ρ2
ρ

ρ+ λ
β′
(
I − 1

1 + ρ/λ
Θ

)−1

1

︸ ︷︷ ︸
≡ξ

β′
(
I − 1

1+ρ/λ
Θ
)−1

β′
(
I − 1

1+ρ/λ
Θ
)−1

1
︸ ︷︷ ︸

≡γ′

(lnγ − ln b)

=
ψλ

ρ2
ξγ ′ (lnγ − ln b) .

For a given consumption path
{
C̄∗
(
yt, p

f
t

)}
, the welfare gain under the alternative consumption

path
{
L · C̄∗

(
yt, p

f
t

)}
is
∫
e−ρt lnL dt = lnL

ρ
. The consumption-equivalent welfare gains from

adopting the optimal R&D allocation is thus

L (b, ξ) = exp

(
ψλ

ρ
ξγ ′ (lnγ − ln b)

)
,

as desired.

B Theoretical Extensions

B.1 Three-Sector Example
To demonstrate Propositions 1 and 2, consider the following three-sector example, where knowl-
edge flows from sector 1 to sector 2 and from sector 2 to sector 3. Sector 1 can thus be interpreted
as the “upstream” sector of knowledge flows, and sector 3 is the knowledge “downstream.” To
ensure the knowledge aggregator χit has constant returns to scale in every sector, we specify that

12Note that I − Θ is generically invertible—the economy with foreign spillovers exhibit aggregate decreasing-
returns-to-scale in domestic R&D—so the proof here is simpler than in the baseline model.
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knowledge in sector 1 also benefits itself. For simplicity, we assume the consumer values goods
from each sector equally, with consumption share βi = 1/3 for all i.

1 Upstream

3 Downstream

2 Midstream

Direction of 
knowledge flow1 Upstream

3 Downstream

2 Midstream

Direction of 
knowledge flow

Ω =




1 0 0
1 0 0
0 1 0


 , β =




1/3
1/3
1/3


 .

1.4.1 Optimal Transition Dynamics

We can actually characterize the optimal convergence path towards the optimal BGP in
closed form. Let n̄t ≡

∑
βj lnnjt be the [consumption-share weighted] average log-knowledge

stock, and let ñt ≡ [lnnjt − n̄t] denote the vector of log-deviation of sectoral knowledge stock
relative to average. Along a BGP, ñt is time-invariant. We know along the optimal growth
path

ln ṅit/nit = ln η + φ (ln γi + ln s̄) +
∑

j

ωij lnnjt − lnnit

thus
˙̃nt = γ̃ − β′γ̃ + (Ω− I) ñt

which we can solve in closed form:

ñt = e−(I−Ω)tñ0 −
(
e−(I−Ω)t − I

)
(I −Ω + 1β′Ω)

−1
(γ̃ − β′γ̃)

We know in the long run,

ñSP ≡ lim
t→∞

ñt = (I −Ω + 1β′Ω)
−1

(γ̃ − β′γ̃)

Hence

ñt − ñSP = e−(I−Ω)t
(
ñ0 − ñSP

)

= Ue−ΛtV
(
ñ0 − ñSP

)

where we conduct eigendecomposition (I −Ω) = UΛV . Hence, the second-largest eigen-
vector of Ω is the upperbound of the half-life for the knowledge stock to converge towards
the optimal BGP under optimal interventions. The actual speed of convergence depends on
the initial deviation of the state variable relative to the steady-state

(
ñ0 − ñSP

)
.

The optimal policy can be decentralized by a sequence of taxes/subsidies. We may be
able to solve the path of taxes/subsidies in closed form. Note that the optimal subsidies
apply only to R&D; we do not want to tax production or profits; such taxes will distort the
cross-sector allocation of production inputs, which is already efficient.

10

The socially optimal R&D allocations depend on the effective discount rate ρ/λ and should
follow, according to Proposition 1,

γ ′ =
ρ

ρ+ λ
β′
(
I − Ω

1 + ρ/λ

)−1

=
[

1+(1+ρ/λ)+(1+ρ/λ)2

3(1+ρ/λ)2
ρ/λ+ρ/λ(1+ρ/λ)

3(1+ρ/λ)2
ρ/λ

3(1+ρ/λ)

]
.

When the effective discount rate ρ/λ is lower, more resources should be directed to upstream
sector 1 and fewer to downstream sector 3. A myopic planner (ρ/λ→ ∞) chooses γ1 = γ3; when
ρ/λ = 1, γ1/γ3 ≈ 3.5; when ρ/λ = 0.1, γ1/γ3 ≈ 30.1.

B.2 Embedding Input-Output Linkages into Production Functions
We now expand on Section 2.7.1 and introduce input-output linkages into the baseline model. As
discussed in the main text, for the optimal R&D allocation γ ′ ∝ β′

(
I − Ω

1+ρ/λ

)−1

, the presence
of a production network requires a different construction for the β vector, but the innovation
network Ω term is unaffected. Formally, the β vector should capture the elasticity of aggregate
consumption with respect to the knowledge stock in each sector; in the presence of a production
network, it should reflect not only the consumer preferences but also the production network
structure. With this adjustment, our main results continue to hold in this environment.

Specifically, suppose the production of good i requires other goods as intermediate inputs:

ln yit =
∑K

j=1σij lnmijt + αi ln q
ψ
itℓit dν, αi +

∑K
j=1σij = 1, (A7)

where mijt is the quantity of good j used for the production of good i, αi is sector i’s output
elasticity to value-added, and σij is sector i’s output elasticity to input j. The baseline model is a
special case with σij = 0 for all i, j. When an equal amount of labor ℓit is allocated to each variety
within a sector, production function (A7) takes the standard form in the canonical production
network model (Acemoglu et al., 2012):

yit =
(
qψitℓit

)αi∏K
j=1m

σij
ijt . (A8)

The market clearing condition for sectoral good follows

yjt =
∑

i

mijt + cjt. (A9)
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The aggregate consumption bundle follows:

ln yt =
K∑

i=1

βi ln cit. (A10)

Consider the problem of choosing worker allocation to maximize flow consumption:

ln y∗ (qt) ≡ max
{ℓit}

K∑

i=1

βi ln cit

subject to (A9) and (A8). Let Σ ≡ [σij] denote the matrix of input-output elasticities. Standard
results in the production networks literature (e.g., see Acemoglu et al., 2012 and Liu, 2019) imply

ln y∗ (qt) = const+ ln ℓ̄+
∑

i

β̂i ln qit,

where β̂i ≡ αi
[
β′ (I −Σ)−1]

i
is the product between sectoral value-added elasticity αi and the

i-th entry of the influence vector β′ (I −Σ)−1. β̂i can be interpreted as the elasticity of aggregate
output with respect to sectoral knowledge stock. Hence, results in the main text extend intuitively
to this setting with input-output linkages: the optimal worker allocation follows the vector β̂, and
the optimal R&D allocation γit ≡ sit/s̄ follows γ ′ ∝ β̂′

(
I − Ω

1+ρ/λ

)−1

.

B.3 Semi-Endogenous Growth
Our baseline model features endogenous growth: a positive growth rate of aggregate output along
a balanced growth path in the absence of population growth. This is because the R&D technol-
ogy features aggregate constant-returns-to-scale in sectoral knowledge stock. We now expand
on Section ?? and embed our innovation network formulation into a semi-endogenous growth
setting, with a constant growth rate in the total measure of scientists s̄t = s̄0e

ḡt. We show that
the optimal R&D allocation follows γ ′ ∝ β′

(
I − Ω

1+κ+ρ/λ

)−1

, and the consumption-equivalent

welfare impact of adopting the optimal allocation is L (b) = exp
(

λ
ρ+κλ

γ ′ (lnγ − ln b)
)
.

Specifically, replace the knowledge stock evolution equation (5) with

q̇it/qit = λ ln
(
nit/q

1+κ
it

)
,

where κ ≥ 0 captures the rate at which proportional improvements in knowledge are getting
harder to find (Bloom et al. 2020, Jones 2022). The knowledge law of motion (9) becomes

d ln qt
/
dt = λ · (lnη + ln st + ḡt+ (Ω− (1 + κ) I) ln qt) .

Integrating the ODE system over time, we get

ln qt = eλ(Ω−(1+κ)I)t

[
ln q0 + λ

∫ t

0

e−λ(Ω−(1+κ)I)u (lnη + ln su + ḡu) du

]
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For given initial levels of knowledge stock and path of worker allocation, the difference in
welfare under two R&D allocations b̃ and b is

V
(
q0; {ℓt} , b̃

)
− V (q0; {ℓt} , b)

= ψβ′
∫ ∞

0

e−ρt
[
ln qt

(
b̃
)
− ln qt (b)

]
dt

= ψλβ′
∫ ∞

0

e−ρt
[∫ t

0

e−λ((1+κ)I−Ω)(t−u)
(
ln b̃− ln b

)
du

]
dt

= ψβ′ ((1 + κ) I −Ω)−1

(∫ ∞

0

e−ρt
[
I − e−λ((1+κ)I−Ω)t

]
dt

)(
ln b̃− ln b

)

=
ψ

ρ
β′ 1

1 + κ

(
I − Ω

1 + κ

)−1
(
I − ρ

ρ+ λ+ λκ

(
I − Ω

1 + κ+ ρ/λ

)−1
)(

ln b̃− ln b
)

=
ψλ

ρ
β′ 1

ρ+ λ+ κλ

(
I − Ω

1 + κ+ ρ/λ

)−1 (
ln b̃− ln b

)

=
ψλ

ρ

1

κλ+ ρ

ρ+ κλ

ρ+ λ+ κλ
β′
(
I − Ω

1 + κ+ ρ/λ

)−1 (
ln b̃− ln b

)

It is easy to verify that γ ′ ≡ ρ+κλ
ρ+λ+κλ

β′
(
I − Ω

1+κ+ρ/λ

)−1

sums to one; hence we have

V
(
q0; {ℓt} , b̃

)
− V (q0; {ℓt} , b) =

ψ

ρ

λ

ρ+ κλ
γ ′
(
ln b̃− ln b

)
.

Clearlyγ is the optimal allocation, and, analogous to the argument in SectionA.6, the consumption-
equivalentwelfare impact of adopting the optimal allocation isL (b) = exp

(
ψλ
ρ+κλ

γ ′ (lnγ − ln b)
)
.

B.4 An Illustrative Decentralized Equilibrium
In an innovation network, knowledge is a public good, as knowledge creation benefits subsequent
R&D in other sectors and all future periods. To the extent that innovators do not fully internalize
such future benefits, a decentralized market does not implement the optimal R&D allocation. To
demonstrate the potential inefficiency, in this section we construct a decentralized equilibrium in
which innovators conduct R&D only in pursuit of profits, disregarding any beneficial spillovers
their R&D activities may provide in the future. As we show, the decentralized allocation of R&D
resources follows the consumption elasticities β along a BGP, which can be efficient only if the
society is completely myopic (ρ/λ→ ∞).

It is important to note that our decentralized equilibrium lacks many real-world features of
the market for innovation (e.g., multi-sector firms, mergers and acquisitions, and patent licens-
ing). This is intentional: the goal of this section is not to capture quantitative realism but to
illustrate as clearly as possible the potential inefficiency of decentralized R&D decisions given
knowledge spillovers. By comparing the R&D allocations in the data to the first-best, our notion
of allocative efficiency—measured by the consumption-equivalent welfare impact of reallocating
R&D optimally—does not require that we take a stance on firms’ equilibrium conduct; instead,
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it has the advantage of directly calculating the welfare impact of reallocating R&D based on the
economic environment.

We demonstrate the inefficiency of decentralized equilibrium in the economic environment
with general functional forms as described in Section 2.5. Specifically, consumption aggregator is
yt = Y ({yit}) constant-returns-to-scale, and corss-sector knowledge spillover follows a general
functionXi ({qjt}) satisfying homogeneous-of-degree-zero with spillovers positive across sectors
(∂ lnXi (·) /∂ ln qjt > 0 for i ̸= j) and bounded above (|∂ lnXi (·) /∂ ln qjt| ≤ 1∀i, j). We show
below in Proposition 8 that along a decentralized BGP, R&D allocation follows ℓi/ℓ̄ = βi ≡
∂ lnY({yit})
∂ ln yit

, which is generically inefficient given Proposition 5.
Specifically, suppose each sectoral good consists of a continuum of intermediate varieties:

ln yit =

∫ 1

0

ln
[
qψit (ν) yit (ν)

]
dν (A11)

where each intermediate variety is produced by a distinct monopolist one-for-one from labor.
Different vintages of the same variety are perfect substitutes. Because the most recent vintage’s
quality is eλ proportionally higher than the next best vintage, the monopolist conducts limit pric-
ing and charges a markup eλψ.13 No vintages with dominated quality are produced in equilibrium.

In each sector, innovation is carried out by a large research intermediary (“R&D firm”), who
hire scientists to conduct R&D and generate new innovationswith Poisson arrival rateϕ (sitXi ({qjt})).
Upon a successful innovation, the R&D firm patents the innovation and sells the patent to a pro-
ducer, who pays for the full value of the patent and becomes the monopolist of that variety until
being replaced by another monopolist when a future successful innovation occurs. The law of
motion for a sector’s knowledge stock is

d ln qit
dt

= f̃ (sitXi ({qjt})) , where f̃ (·) ≡ λ× ϕ (·).

The representative consumer receives all workers’ and scientists’ income and profits of pro-
ducers and the R&D firms. Given the initial state variables {qi0}Ki=1, a decentralized equilibrium
is the time path of prices, quantities, and knowledge stocks such that production firms set prices
to maximize profits, the consumer chooses bundles of goods to consume to maximize utility, and
potential entrants hire scientists for R&D to maximize expected profits. A decentralized BGP is
an equilibrium in which all sectors’ knowledge stock grows at the same constant rate.

Note that whenworker allocation is constant across varieties in each sector, ℓit (ν) = ℓit ∀ν—
which is true in the decentralized equilibrium, as shown in Proposition 8 below—the economic
environment described here coincides with that in Section 2.5. Following Section 2.5, we let βi ≡
∂ lnY({yit})
∂ ln yit

denote the consumption elasticity with respect to sectoral good i along a decentralized
BGP. This is also the consumer expenditure share on good i.

Proposition 8. In the decentralized BGP, the allocations of R&D and production resources both
follow the consumption elasticities: ℓit (ν) = ℓit = βiℓ̄ and sit = βis̄.

Proof. Wenormalize the consumer price index to one for all times t. The consumer spends fraction
13Note that λ is proportional to the profit margin.
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βi of their income on sectoral composite good i, with

pityit = βiyt for all i, t. (A12)

The sectoral composite aggregator (A11) further implies that the total revenue of each variety ν is
also equal to βiyt, and, because each monopolist sets a markup eλψ, we derive the profits in each
sector i as

πit (ν) =
(
1− e−λψ

)
βiyt for all i, t, ν. (A13)

Because all varieties have identical markups, the worker allocation is identical across varieties
within each sector. Given a constant markup across all sectors, the total worker allocation in each
sector is also proportional to the consumption shares βi:

ℓit (ν) = ℓit = βiℓ̄ for all i, t, ν. (A14)

Along the BGP, a monopolist in each sector has the same Poisson rate ϕ̄ to be replaced by an
innovating entrant. The value of a monopolistic firm is thus

vit ≡
∫∞
t
e−(r+ϕ̄)(s−t)πis ds, (A15)

where r is the interest rate. Note we have suppressed the index for variety since all varieties have
the same profits and thus the same value within each sector. Because sectoral profits are always
proportional to the consumption shares at all times, we have

vit/vjt = βi/βj for all i, j, t. (A16)

Entrants hire scientists to conduct research in order to become future monopolists. The marginal
value from an additional scientist must be equalized across sectors, further implying

vit
∂ϕ (sitXi ({qkt}))

∂sit
= wst

where wst is the wage rate of a scientist at time t. Using the fact that vit/vjt = βi/βj , we have

βi
sit

∂ϕ (sitXi ({qkt}))
∂ ln sit

=
βj
sjt

∂ϕ (sjtXj ({qkt}))
∂ ln sjt

Further note that ∂ϕ(sjtXj({qkt}))
∂ ln sjt

= ϕ′ · Xj ({qkt}) sjt which must be the same across all sectors
along a BGP. Hence we obtain that scientist allocation must also follow the consumption share,
that is, sit/s̄ = βi for all t, as desired.

Intuitively, varieties in a sector with higher consumption share βi have proportionally higher
revenue, employment, and flow profits. Since the rate at which an innovating entrant replaces a
producing monopolist is the same across all sectors along a BGP, a monopolistic firm’s value is
also proportional to the consumption share βi of the sector. Because entrants conduct research to
obtain that monopolistic value, the marginal value from an additional scientist must be equalized
across sectors, and the innovation production function (4) thus implies that R&D allocation must
follow sit = βis̄ along the BGP.
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According to Proposition 5, a necessary condition for the decentralized balanced growth path
to be efficient is for the society to be myopic (with ρ → ∞). While the social planner takes
into account both R&D’s direct effect on product quality as well as the infinite rounds of indirect
network spillover effects, the decentralized allocation is driven by firm profits and thus accounts
only for the direct effect, as infinitesimal firms cannot monetize the future spillover effects of their
own R&D.

B.5 Constrained Optimal R&D Allocations
In some settings, for instance under political or feasibility constraints, a planner may only be able
to reallocate resources across a subset K ⊂ {1, . . . , K} of sectors. We now generalize our results
to such an environment. We show that our earlier results extend naturally: resources among
sectors in K should be allocated proportionally to the unconstrained optimal allocation γ. We
generalize the welfare sufficient statistic to this setting as well.

For a generic allocation vector b, we denote bK as the |K| × 1 allocation vector that sums to
one with entries proportional to b for all sectors in K (i.e., bKi ≡ bi∑

j∈K bj
for i ∈ K).

Proposition 9. Suppose R&D allocations in sectors k ̸∈ K are given exogenously and that the plan-
ner can only choose R&D allocations in sectors k ∈ Kwhen solving the planning problem in (7). Along
the entire equilibrium path, the constrained optimal R&D allocation is si = γKi

(
s̄−∑k ̸∈K sk

)
for

i ∈ K. The consumption-equivalent welfare gains from adopting the constrained-optimal R&D allo-
cation (instead of allocation b) is LK (b) = exp

(
ψλ
ρ

(∑
j∈K γj

) (
γK)′ (lnγK − ln bK

))
.

The Proposition shows that among sectors in which the planner can allocate resources, the
constrained-optimal resource allocation is proportional to the unconstrained-optimal allocationγ.
For thewelfare sufficient statistic, note that the relative entropy of bK fromγK,

(
γK)′ (lnγK − ln bK

)
,

summarizes the distance relative to the first-best allocation among sectors in K. Relative to the
welfare formula (15) for the unconstrained optimal allocation, the new term

∑
j∈K γj ≤ 1 (with

equality when K includes all sectors) reflects the fact that there is less to be gained when the
planner can reallocate resources across fewer sectors.

Proof. Let sK ≡ s̄−∑k/∈K sk denote the available resource the planner can allocate among sectors
inK, and let γKi denote the constrained-optimal share of sK allocated to sector i. That γKi is time-
invariant follows from the same proof as Proposition 3. γK is thus the solution to

γK = arg max
{δi}i∈K

∑

i∈K
γi (ln δi − ln bi) s.t.

∑

i∈K
δi = 1.

It is thus immediate that γKi = γi∑
j∈K γj

. By Proposition 3, the welfare gains from adopting the
constrained optimal allocation is

ψλ

ρ2

(∑

i∈K
γi

(
ln γKi

(∑

i∈K
bi

)
− ln bKi

(∑

i∈K
bi

))
+
∑

i/∈K
γi (ln bi − ln bi)

)
,

the consumption-equivalent gains then simplifies to the formula in the Proposition.
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The Proposition also holds in an environment with foreign spillovers, which we state below.

Proposition 10. Consider an open economy with R&D self-sufficiency ξ and given paths of for-
eign knowledge and relative import prices

{
qft , p

f
t

}∞

t=0
. Suppose R&D allocations in sectors k ̸∈ K

are given exogenously and that the planner can only choose R&D allocations in sectors k ∈ K
when solving the planning problem in (20). Along the entire equilibrium path, the constrained op-
timal R&D allocation is si = γKi

(
s̄−∑k ̸∈K sk

)
for i ∈ K. The consumption-equivalent welfare

gains from adopting the constrained-optimal R&D allocation (instead of allocation b) is LK (b) =

exp
(
ψλ
ρ
ξ
(∑

j∈K γj
) (

γK)′ (lnγK − ln bK
))
.

B.6 Optimal R&D Allocation in Large Open Economies
In the open economy environment presented in the main text, we studied the problem of a do-
mestic planner who takes the paths of import prices and foreign knowledge as given. In this
appendix section, we construct an environment in which a domestic planner internalizes the im-
pact of domestic allocations on foreign variables. This analysis is empirically relevant for studying
the R&D allocation in the U.S., a country that generates significant knowledge spillovers to other
economies.

Consider an environment with two economies, home (U.S.) and foreign (rest of the world).
The home consumer has preferences

V =
∫∞
0
e−ρt

(
σh ln chht +

(
1− σh

)
ln chft

)
dt, (A17)

where chht is the home consumption of home goods and chft is the home consumption of foreign
goods. Home goods is a Cobb-Douglas aggregator over sectoral composite goods, which are pro-
duced from labor (equations 2 and 3). We can simplify the home production functions as

ln yht =
∑

i

βi
(
ψ ln qhit + ln ℓhit

)
. (A18)

Home can import the foreign goods chft by exporting unconsumed home goods
(
yht − chht

)
. Home

innovation production function follows

nhit = shitχ
h
it, where χhit = ηhi

∏K
j=1

[(
qhjt
)xhij (qfjt

)1−xhij]ωij
, (A19)

and the law of motion for home knowledge stock is

d ln qhit
dt

= λ ln
(
nhit/q

h
it

)
. (A20)

Home is endowed with workers ℓ̄h and scientists s̄h. The foreign economy has analogous prefer-
ences and technologies, swapping superscripts h and f .

We study the home planner’s problem of allocating workers and scientists to maximize home
welfare, while taking the time path of foreign allocations

{
ℓft , s

f
t

}
as given and decentralizing

A18



international trade. Given home and foreign output yht , y
f
t , Cobb-Douglas preferences imply that

the home consumer spends
(
1− σh

)
fraction of income on home imports, and that the foreign

consumer spends
(
1− σf

)
fraction of income on home exports. Trade balance therefore implies

that home consumption of foreign goods is
(
1− σf

)
yft . Hence, given flow output yht , y

f
t , the

home consumer’s flow utility is

σh ln chht +
(
1− σh

)
ln chft = σh lnσhyht +

(
1− σh

)
ln
(
1− σf

)
yft .

Substituting into (A17), we can write the home planning problem as

V ∗
({

ℓft , s
f
t

}∞

t=0

)
≡ max

{shit,ℓhit}
∫∞
0
e−ρt

(
σh ln yht +

(
1− σh

)
ln yft

)
dt, (A21)

subject to the innovation production functions (A20 and A19), goods production function (A18),
and the corresponding foreign innovation and goods production functions

d ln qfit
dt

= ln ηfi + ln sfit +
K∑

j=1

ωij

(
xfij ln q

f
jt +

(
1− xfij

)
ln qhjt

)
,

ln yft =
∑

i

βi

(
ln qfit + ln ℓfit

)
,

with market clearing conditions
∑

i s
h
it = s̄h and

∑
i ℓ
h
it = ℓ̄h.

To solve the home planner’s problem, first consider a hypothetical world as an integrated
economy in which resources can freely move across countries, and where the home planner can
choose worker and scientist allocations in both economies; then, our closed economy analysis in
Section 2.2 exactly applies: the solution would be characterized exactly by our closed economy
results in Lemma 1 and Proposition 1, recognizing that there areK×2 sectors in both economies,
with home’s consumption elasticity captured by

β̂′ ≡
[
σhβ′,

(
1− σh

)
β′] , (A22)

and the innovation network captured by

Ω̂ ≡
[

Ω ◦Xh Ω−Ω ◦Xh

Ω−Ω ◦Xf Ω ◦Xf

]
. (A23)

Optimal worker allocation should follow β̂, and optimal R&D allocation should follow

γ̂ ′ ≡ ρ

ρ+ λ
β̂′
(
I2K×2K − Ω̂

1 + ρ/λ

)−1

. (A24)

Next, recognize that the actual home planner’s problem (A21) is essentially the same as in the
hypothetical integrated economy, but with the additional constraint that the home planner can
only allocate resources domestically. We can apply the result in Section B.5 to get the following
Proposition.
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Proposition 11. The optimal resource allocation for an open economy planner who takes the path of
foreign allocations

{
ℓft , s

f
t

}
as given and solves the problem in (A21) is to allocate workers according

to β̂K (i.e., ℓhit/ℓ̄
h = β̂K

i ) and R&D resources according to γ̂K (i.e., shit/s̄
h = γ̂Ki ), where K is the set of

domestic sectors, and

β̂K
i =

β̂i∑
j∈K β̂j

, γ̂Ki =
γ̂i∑
j∈K γ̂j

.

The consumption-equivalent welfare gains from adopting the optimal domestic R&D allocation (in-
stead of allocation b) is LK (b) = exp

(
ψλ
ρ

(∑
j∈K γ̂j

) (
γ̂K)′ (ln γ̂K − ln b

))
.

B.7 General Functional Forms andEndogenous InnovationNetworkwith
Foreign Spillovers

We now extend our analysis in Section 2.6 to incorporate general functional forms, thereby en-
dogenizing the degree to which domestic innovation benefits from foreign spillovers. We show,
analogous to our closed-economy analysis in Section 2.5, that Proposition 7 in the main text con-
tinues to hold, as a first-order approximation around a balanced growth path, to thewelfare impact
of adopting the optimal R&D allocation.

For completeness, we provide all equations to this economic environment:

V
({
qfjt, p

f
t

})
=
∫∞
0
e−ρt ln C

(
cdt , c

f
t

)
dt,

pft c
f
t = yt − cdt .

yt = Y
({
qψitℓit

})

d ln qit/ dt = λ ·
(
ln (bits̄) + lnXi

({
qjt, q

f
jt

}))

The first equation represents consumer welfare; the second equation is trade balance; the third
equation is the production function; the last equation is the law of motion for sectoral knowledge
stock. The function Xi

({
qjt, q

f
jt

})
captures how domestic innovation in sector i benefits from

domestic and foreign knowledge; it is a generalization of the Cobb-Douglas functional form in
equation (19). We assume C and Y are constant-returns-to-scale, and that Xi (·) is homogeneous-
of-degree-zero, ∂ lnXi (·) /∂ ln qjt ≥ 0 ∀i ̸= j, ∂ lnXi (·) /∂ ln qfjt ∀i, j, and |∂ lnXi (·) /∂ ln qjt| ≤
1∀i, j.

Consider the economy initially at t = 0 in a BGP with R&D allocation b, where foreign knowl-
edge qfjt grows at exogenous rate g in all sectors, and pft is time-invariant. Define

βi ≡
∂ lnY ({yit})

∂ ln yit

∣∣∣
t=0
, θij ≡





∂ lnXi({qit,qfjt})
∂ ln qjt

∣∣∣
t=0

if i = j

1 +
∂ lnXi({qit,qfjt})

∂ ln qjt

∣∣∣
t=0

otherwise.

β ≡ [βi] and Θ ≡ [θij] are the consumption and innovation spillover elasticities with respect to
domestic knowledge stock evaluated in the initial BGP. Note that I−Θ is generically invertible, as
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the economy features aggregate decreasing-returns-to-scale with respect to domestic knowledge
stock.

The Gateaux derivative of welfare with respect to log R&D allocation in the direction of h is
λ
ρ
ξγ ′h; the proof parallels that of Proposition 5.

B.8 Sector-Specific λi’s

Wenow introduce a theoretical extension allowing for sector-specificλi. LetΛ ≡




λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λK




denote the diagonal matrix with λi along the diagonal, and let λ ≡ [λi] denote the vector of λi’s.
We show the optimal R&D allocation γ should follow (scaled so that γ sums to one)

γ ′ ∝ β′ (I −Ω+ ρΛ−1
)−1

and the consumption-equivalent welfare impact of adopting the optimal allocation is

L (b) = exp
(
ψβ′ (I −Ω+ ρΛ−1

)−1
(lnγ − ln b)

)
.

Specifically, the social planner’s problem is

max
{γt} s.t. γ′t1=1∀t

∫ ∞

0

e−ρtβ′ ln qt dt

s.t. d ln qt/dt = Λ (lnη + ln s̄1+ lnγt + (Ω− I) ln qt) (A25)

The control variable is γt and the state variable is qt. Denote the co-state variables as µt. The
current-value Hamiltonian is

H(γt, qt,µt, ζ) = β′ ln qt + µ′
tΛ [lnη + ln s̄1+ lnγt + (Ω− I) ln qt] + ζ (1− γ ′

t1).

For notational simplicity we suppress dependence on time for control, state, and co-state variables:

H({γi}, {qi}, {µi}, ζ, t) =
∑

i

βi ln qi +
∑

i

µiλi

(
ln ηi + ln s̄+ ln γi +

∑

j

ωij ln qj − ln qi

)
+ ζ(1−

∑

i

γi).

By the maximum principle

Hγi = 0 ⇐⇒ λiµi
γi

= ζ ∀i (A26)

Hln qi = ρµi − µ̇i ⇐⇒ βi − λiµi +
∑

j

λjµjωji = ρµi − µ̇i (A27)
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Similar to the proof of Proposition 1, we can show µ̇i = 0 for all i; hence,

γ ′ ∝ µ′Λ,

β′ = µ′ ((ρ+Λ) I −ΛΩ)

= µ′Λ
(
ρΛ−1 + I −Ω

)

∝ γ ′ (ρΛ−1 + I −Ω
)

Hence
γ ′ = β′ (I −Ω+ ρΛ−1

)−1
.

To derive the welfare impact of R&D reallocation, let gqi ≡ d ln qit
dt

be the growth rate of knowl-
edge stock in sector i along the BGP. We know

gq = Λ (lnη + ln s̄1+ ln b+ (Ω− I) ln qt)

Take derivative with respect to time,

0 = Λ (Ω− I)
d ln qt
dt

So that
gq = Ωgq

We know the only right-Perron eigenvector of Ω is the constant vector; hence all sectors must
grow at the same rate gq, satisfying

gq1 = Λ (lnη + ln s̄1+ ln b+ (Ω− I) ln qt)

=⇒ gqa′Λ−11 = a′ (lnη + ln s̄1+ ln b+ (Ω− I) ln qt)

=⇒ gq =
a′ (lnη + ln s̄1+ ln b)

a′Λ−11

Let A ≡ 1a′Λ−1

a′Λ−11
. Note (I −A) ln s̄1 = 0, and that

(Ω− I) = (Ω− I) (I −A)

= − (I −Ω+A) (I −A)

Let l̃n qt ≡ (I −A) ln qt; then

(I −A) d ln qt/dt =

(
Λ− 1a′

a′Λ−11

)
(lnη + ln s̄1+ ln b) +Λ (Ω− I) ln qt

= (I −A)Λ (lnη + ln b)−Λ (I −Ω+A) (I −A) ln qt

dl̃n qt
dt

= (I −A)Λ (lnη + ln b)−Λ (I −Ω+A) (I −A) l̃n qt
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We can integrate the ODE system:

l̃n qt = e−Λ(I−Ω+A)t

[
˜ln q0 +

∫ t

0

eΛ(I−Ω+A)s (I −A)Λ (lnη + ln b) ds

]

= e−Λ(I−Ω+A)t˜ln q0 +Λ−1 (I −Ω+A)−1 [I − e−Λ(I−Ω+A)t
]
(I −A)Λ (lnη + ln b)

We know

A
d ln qt
dt

=
1a′Λ−1

a′Λ−11
Λ (lnη + ln s̄1+ ln b+ (Ω− I) ln qt)

=
1a′

a′Λ−11
(lnη + ln s̄1+ ln b)

= AΛ (lnη + ln s̄1+ ln b)

Hence
A ln qt (b) = A ln q0 +AΛ (lnη + ln s̄1+ ln b) t

Now consider starting from the same initial knowledge stock q0 but with two different time-
invariant R&D allocations b̃ and b,

A ln qt

(
b̃
)
−A ln qt (b) = AΛ

(
ln b̃− ln b

)
t

we have the following difference in knowledge stock over time:

ln qt

(
b̃
)
− ln qt (b) = A ln qt

(
b̃
)
−A ln qt (b)

+l̃n qt

(
b̃
)
− l̃n qt (b)

=
[
AΛt+Λ−1 (I −Ω+A)−1 [I − e−Λ(I−Ω+A)t

]
(I −A)Λ

] (
ln b̃− ln b

)
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The difference in consumer welfare under two time-invariant paths of R&D allocations is

V
(
q0; {ℓt} , b̃

)
− V (q0; {ℓt} , b)

= ψβ′
∫ ∞

0

e−ρt
[
ln qt

(
b̃
)
− ln qt (b)

]
dt

= ψβ′
∫ ∞

0

e−ρt
[
AΛt+Λ−1 (I −Ω+A)−1 [I − e−Λ(I−Ω+A)t

]
(I −A)Λ

]
dt
(
ln b̃− ln b

)

=
ψ

ρ2
β′AΛ

(
ln b̃− ln b

)

+ψβ′Λ−1 (I −Ω+A)−1

[
1

ρ
I −

∫ ∞

0

(
e−((ρI+Λ)I−Λ(Ω−A))t

)
dt

]
(I −A)Λ

(
ln b̃− ln b

)

=
ψ

ρ
β′
{
1

ρ
AΛ+ ([(ρI +Λ)−Λ (Ω−A)])−1 (I −A)Λ

}(
ln b̃− ln b

)

=
ψ

ρ
β′ ([(ρI +Λ)−Λ (Ω−A)])−1

([
I +

1

ρ
Λ (I − (Ω−A))

])
AΛ

(
ln b̃− ln b

)

+
ψ

ρ
β′ ([(ρI +Λ)−Λ (Ω−A)])−1 (I −A)Λ

(
ln b̃− ln b

)

=
ψ

ρ2
β′ ([(ρI +Λ)−Λ (Ω−A)])−1 (ρI +ΛA)Λ

(
ln b̃− ln b

)

=
ψ

ρ2
β′ ([I −Ω+ ρΛ−1 +A

])−1
(ρI +AΛ)

(
ln b̃− ln b

)

=
ψ

ρ2
β′ ((ρI +AΛ)−1 [I −Ω+ ρΛ−1 +A

])−1
(
ln b̃− ln b

)

Let α ≡ a′Λ−11. Note
(ρI +AΛ)−1 =

1

ρ

(
I − α

1 + αρ
AΛ

)

To see this,

(ρI +AΛ)
1

ρ

(
I − α

1 + αρ
AΛ

)

=
1

ρ

(
ρI +AΛ− (ρI +AΛ)

α

1 + αρ
AΛ

)

= I +
1

ρ

(
1a′

α
−
(
ρI +

1a′

α

)
1

1 + αρ
1a′
)

= I +
1

ρ

(
1

α
− 1 + αρ

α

1

1 + αρ

)
1a′

= I
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Hence,

V
(
q0; {ℓt} , b̃

)
− V (q0; {ℓt} , b)

=
ψ

ρ2
β′
(
1

ρ

(
I − α

1 + αρ
AΛ

)[
I −Ω+ ρΛ−1 +A

])−1 (
ln b̃− ln b

)

=
ψ

ρ
β′
([

I −Ω+ ρΛ−1 +
1a′Λ−1

α

]
− 1a′

1 + αρ

[
I −Ω+ ρΛ−1 +

1a′Λ−1

α

])−1 (
ln b̃− ln b

)

=
ψ

ρ
β′
([

I −Ω+ ρΛ−1 +
1a′Λ−1

α

]
− 1a′Λ−1

α

)−1 (
ln b̃− ln b

)

=
ψ

ρ
β′ (I −Ω+ ρΛ−1

)−1
(
ln b̃− ln b

)

Following the proof of Proposition 4, the consumption-equivalent welfare impact of adopting
the optimal allocation is thus

L (b) = ψβ′ (I −Ω+ ρΛ−1
)−1

(lnγ − ln b) .

B.9 Innovation Network with Heterogeneous Row-Sums
Our baseline specification of Ω assumes that each row sums to one (i.e., Ω1 = 1, so that Ω is
a row-stochastic Markov matrix). Because the spectral radius of any Markov matrix is equal to
one, our baseline model is one with endogenous growth. The specification also motivates our
measurement of the innovation network based on patent citations, ωij ≡ Citesij∑K

k=1 Citesik
.

In general, the knowledge spillover network is inherently difficult to measure. A reason al-
ternative specification is to construct the network as ωij ∝ Citesij . This specification results
in an innovation network matrix Ω with heterogeneous row-sums (

∑
j ωij varies with i). The

proportionality constant maps monotonically into the spectral radius of Ω. The model features
endogenous (semi-endogenous) growth if the spectral radius is equal to (less than) one.14

Propositions 1 extends directly to the case where the spectral radius of Ω is ≤ 1, as the proof
does not make use of the fact that Ω is row-stochastic. We now show Proposition 4 holds in the
endogenous growth case, with the spectral radius of Ω equal to one. Analogous results can be
derived (but omitted here) in the semi-endogenous growth case as well.

Let v denote the right-Perron eigenvector of Ω, scaled so that a′v = 1. Let A ≡ va′. We
adapt the derivations in the proof of Proposition 3 to this setting, replacing A ≡ 1a′ in the
baseline proof toA ≡ va′. Note that in the baseline setting whereΩ is row-stochastic, v = 1, so
the derivation below is a strict generalization.

For time-invariant R&D allocation b, the law of motion of sectoral knowledge stock implies

a′ d ln q

dt
= λa′ (lnη + ln s̄ · 1+ ln b)

Hence, a′ ln qt always grows at a constant rate (and it equals to the rate of growth along a BGP)
14The model features explosive growth if the spectral radius of Ω is greater than one.
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and can be solved in closed-form:

a′ ln qt = a′ ln q0 + λa′ (lnη + ln s̄ · 1+ ln b) t

Note that ΩA = AΩ = A andAA = A. Hence

(I −A) (Ω− I) = (I −Ω+A) (I −A)

Left-multiply the law of motion by (I −A), substitute the above, and let l̃n qt ≡ (I −A) ln qt,
we get

dl̃n qt
dt

= λ (I −A) (lnη + ln b)− λ (I −Ω+A) l̃n qt

Following the proof of Proposition 3,

l̃n qt = e−λ(I−Ω+A)t

[
˜ln q0 + λ

∫ t

0

eλ(I−Ω+A)s (I −A) (lnη + ln b) ds

]

= e−λ(I−Ω+A)t˜ln q0 + (I −Ω+A)−1 (I − e−λ(I−Ω+A)t
)
ds (I −A) (lnη + ln b)

ln qt = l̃n qt +A ln qt

= A ln q0 + λA (lnη + ln s̄ · 1+ ln b) t

+e−λ(I−Ω+A)t˜ln q0 + (I −Ω+A)−1 (I − e−λ(I−Ω+A)t
)
ds (I −A) (lnη + ln b)

Starting from the same initial knowledge stock q0 but with two different time-invariant R&D
allocations b̃ and b, we have the following difference in knowledge stock over time:

ln qt

(
b̃
)
− ln qt (b) = A ln qt

(
b̃
)
−A ln qt (b)

+l̃n qt

(
b̃
)
− l̃n qt (b)

=
[
Aλt+ (I −Ω+A)−1 (I − e−λ(I−Ω+A)t

)
(I −A)

] (
ln b̃− ln b

)

The difference in consumer welfare under two time-invariant paths of R&D allocations is (deriva-
tion follows from the proof of Proposition 3)

V
(
q0; {ℓt} , b̃

)
− V (q0; {ℓt} , b)

= ψβ′
∫ ∞

0

e−ρt
[
ln qt

(
b̃
)
− ln qt (b)

]
dt

=
ψ

ρ

λ

ρ+ λ
β′
(
I − λ

ρ+ λ
Ω

)−1 (
ln b̃− ln b

)

=
ψλ

ρ2
γ ′
(
ln b̃− ln b

)
.
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which establishes Proposition 3 in this setting where Ω is not row-stochastic (but has spectral
radius equal to one). Proposition 4 follows immediately.

We can also derive the growth rate of sectoral knowledge stock along a BGP. We have already
derived the centrality-weighted growth rates above:

a′ d ln q

dt
= λa′ (lnη + ln s̄ · 1+ ln b) (A28)

We now derive the growth rate g of q in each sector. We have

g = λ (lnη + ln s̄ · 1+ ln b+ (Ω− I) ln qt)

Differenting with respect to time, we get

g = Ωg

Hence, the vector of sectoral growth rates is the right-Perron vector of the spillover matrix Ω,
with the scale pinned down by equation (A28).

B.10 Resource Mobility Between Production and R&D
In the closed economy analysis in the main text, we assumed the endowments of production
workers ℓ̄ and scientists s̄ are both exogenous. We now argue that the optimal allocation shares
ℓit/ℓ̄ and sit/s̄ characterized in Lemma 1 and Proposition 1 continue to hold even if agents in the
economy can endogenously choose to become workers or scientists.

First, note that the proofs of Lemma 1 and Proposition 1 continue to hold even if the exoge-
nous endowments of workers and scientists are time-varying. Let V

(
q0;
{
ℓ̄t
}
, {s̄t}

)
denote the

planner’s value function, where the masses of workers and scientists are both exogenous along
the entire growth path. The value function (7) in the main text corresponds to the special case
where ℓ̄t = ℓ̄ and s̄t = s̄.

Now assume the economy is endowed with a unit mass of agents who can freely choose to
become workers or scientists, ℓ̄t + s̄t = 1. The value function that solves the relaxed problem,
where ℓ̄t and s̄t are endogenous, can be written as

V (q0) = max
{ℓ̄t,s̄t}

V
(
q0;
{
ℓ̄t
}
, {s̄t}

)
s.t. ℓ̄t + s̄t = 1.

Since the optimal allocation shares of workers (ℓit/ℓ̄) and scientists (sit/s̄) are invariant to the
total mass of workers and scientists, it follows directly that the solution characterized in Section
2.2 continues to hold in the relaxed problem.
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C Details on Data Construction
In this appendix, we provide details on data collection and harmonization and robustness of our
approach.

C.1 U.S. Patent Data
U.S. patent data are obtained from the United States Patent and Trademark Office (USPTO).15
The data include information on patent inventors and patent assignee, allowing us to identify the
geographic locations of the innovation (e.g., identifying cases in which a Chinese firm is granted a
USPTO patent). We also observe the timing of the patents including the application and grant year.
Each patent record also provides information about the invention itself, including—important for
our research—its technology classifications based on the International Patent Classification (IPC)
system and the citations it makes to prior inventions.

C.2 Global Patent Data
Data Source To capture global innovation, we use global patent data collected from Google
Patents. The data set contains information on more than 36 million patents from the more than
40 main patent authorities around the world, over the period 1976–2020, including the USPTO,
the European Patent Office (EPO), the Japanese Patent Office (JPO), and the Chinese National
Intellectual Property Administration, among others. For each patent, Google Patents provides
similar information as in the USPTO data described above.

Google Patents data are obtained from the DOCDB (EPO worldwide bibliographic data), the
same underlying source as the more widely used PATSTAT data. We choose to use Google Patents
as our main global innovation data source because it is public and accessible to all researchers free
of charge. In Appendix D, we discuss specific differences between Google Patents and PATSTAT
data. We show that these databases have only minor differences in their coverages and definitions
of key variables and that all our empirical results are robust to both.

Identifying Patenting Locations Filing a patent in a country or patent office does not neces-
sarily mean the underlying invention is created in the same geographic unit (e.g., Chinese firms
file USPTO patents, Korean firms file patents with the Chinese National Intellectual Property Ad-
ministration). These “global patenting” activities pose two important challenges for our empirical
analysis. First, we need to properly determine the geographical location of the innovating activ-
ities. We assign each patent to a geographical unit according to the country of residence of its
inventor(s). When a given patent is associated with multiple inventors from different countries or
territories, we assign these inventors equal weight (e.g., N inventors each obtaining 1/N credit).
If this information is not available (as in 31% of the global patent sample),16 we use the country of

15We obtain the patent data from the USPTO PatentsView platform, accessible at https://www.patentsview.org/
download/.

16Patent observations with only the country of the patent office as geographic location are mainly historical U.S.
patents (51%) and historical patents originating from France, Germany, and the Soviet Union (each accounting for
about 10%).
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the assignee(s) instead. For 8% of patents with no easily accessible geographic location data, we
assign the country of the patent office.

Identifying a Unique Invention Behind Multiple and Multinational Patents The second
challenge is to de-duplicate multiple patents filed with different patent authorities for the same
underlying invention. This is common practice for IP protection reasons, but may lead to double
counting. To overcome this challenge, we use patent family information. We assign a set of patents
to the same family if they have: (1) the same application number; or (2) the same PCT number;
or (3) the same Google-provided patent family ID; or (4) at least one priority application number
in common. Using patent family information, we can make sure a single invention is not counted
more than once even when multiple patents are filed based on it. We also can use the earliest
filing date to properly identify the timing of the underlying invention.

Cross-country Citations Importantly, patent citation information is global too—that is, we
observe citations made by a patent filed by a U.S. firm with the USPTO to a patent owned by a
German firm filed at the EPO. This allows us to track the innovation network at the global scale. In
our sample, the proportion of citations a patent makes to foreign patents is 38%, and this number
has been growing over the years.

C.3 Connecting Patent Data with Sectoral Data
Patent data are classified into International Patent Classification (IPC) classes based on the tech-
nological content of the invention. The IPC system provides a uniform and hierarchical system
of language-independent symbols for the classification of patents and utility model according to
the different areas of technology to which they pertain. The IPC classification system does not
naturally map to the sector classifications in either the WIOD data nor the BLS data on sectoral
output and linkages. Specifically, each sector could patent in multiple IPC classes, while many
sectors could patent in each single IPC class. Patent data need to be mapped to sectoral data (on
value-added, R&D expenditures, employment, intermediate inputs, etc.) for our empirical analysis
in different sections of our paper. This includes: (1) constructing sectoral measures of innovation
activities, and (2) projecting sectoral measures into technology class levels.

Measuring Innovation at the Sector Level To construct innovation output for each country-
sector-year and the country-sector-pair-wise innovation network, we need to map innovation
activities to industrial sectors. We rely on our ability to observe innovation activities at the level
of firms, for which we observe their industry classifications. Starting with U.S. domestic data—
we link the USPTO patent database to Compustat using the bridge file provided by the NBER
(up to the year 2006) and KPSS’s data repository.17 For later years, we complete the link using
a fuzzy matching method based on company name, basic identity information, and innovation
profiles, similar to Ma (2020) and Ma (2021). Firms’ sectoral classifications are defined by North
American Industry Classification System (NAICS) codes, which are then mapped to BLS sectors
using the crosswalk file provided by the BLS website.18 For each sector, we can aggregate all

17The extended data for KPSS can be accessed at https://github.com/KPSS2017/
Technological-Innovation-Resource-Allocation-and-Growth-Extended-Data.

18Accessed at https://www.bls.gov/ces/naics/.
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Figure A.1. Comovements of Public Patent Sample and Whole Sample
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Notes. This table documents the time trend of the patent shares for firms covered in our firm-level databases across
the world and in different countries.

innovation activities including patent numbers, citation-adjustment patent counts, and total R&D
expenditures, conducted by U.S. firms in that specific sector..

The connection between international patent and sectoral data implements a similar logic
but uses more complicated data collection and matching processes. We assemble information
on global firms from Worldscope and Datastream databases accessed through Wharton Research
Data Services (WRDS). The raw data sets cover more than 109,000 global firms located in 160
countries all over the world. The process is similar to that described above for U.S. data. The
standard industry classifications in these databases are based on the International Standard In-
dustrial Classification (ISIC), and can therefore be accurately mapped to the WIOD, which is also
organized using the ISIC system.

The benefit of using information on firms to accurately link innovation to industrial sectors
warrants the question of how representative those firms’ innovation are. We find that firms in
our data set produce about half of all patents in each country—for example, our sample of firms
covers 44% of patents in the U.S., and 65% in Japan, two countries with the largest number of
patents. Figure A.1 shows the time trend of patent shares from firms covered in our databases
in the whole world and in different countries. The similarity of industry distribution between
patents from covered firms and all patents in the USPTO is 0.97 when we compare the share of
patents in each of the 131 3-digit IPCs for all patents and for patents from firms covered in our
firm-level databases.

Projecting Sectoral Measures to Technology Classes When the unit of analysis is an IPC
class (in a certain country-year), the key challenge is to project sectoral measures, such as value-
added, to technology classes. We use the sector-IPCmapping provided in Lybbert and Zolas (2014).
Using this mapping, we decompose each sectoral measure with proper weights to relevant IPC
classes, and then aggregate the measures into the IPC level.
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C.4 Constructing Cross-Sector R&D Allocation Data
Our quantitative analysis uses data on R&D allocation across different technology classes in each
country. There is no standard database to exhaustively measure such information. Our primary
measure relies on aggregating firm-level R&D expenditures to the country-sector-year level, based
on three widely used firm-level data sets: Compustat, Worldscope, and Datastream. Combined,
these data cover more than 100,000 global firms located in 160 countries and account for over
95% of the world’s total market capitalization. For multinationals, we first attribute the firm-level
R&D expenditures to IPC-country level in proportion to each firm’s shares of patents in each IPC-
country, following Griffith, Harrison and Van Reenen (2006), and then aggregate to IPC-country-
year level.

This primary measure of sectoral R&D has the advantage of covering more country-years
compared to alternative approaches such as the OECD ANBERD Database. It also allows us to
attribute R&D expenditures of multi-sector and multinational firms more explicitly and in a more
transparent fashion. However, the primary measure of sectoral R&D is imperfect, as the firm-
level data sets oversample large firms and have potentially different reporting standard across
countries; we also miss R&D inputs from public sectors. Nevertheless, it is important to note
that, as our theory concerns the cross-sector R&D allocation, what matters for our quantitative
analysis later is the allocation shares of R&D resources across sectors in each country and not the
aggregate R&D levels; any mismeasurement that affects all sectors proportionally should have no
quantitative impacts.

As robustness checks, we show that our primary measure of R&D allocation shares correlates
strongly with two independent sources of R&D data, thereby giving us confidence in using our
measure for quantitative analysis. We first provide a robustness check using the OECD Analytical
Business Enterprise Research and Development (ANBERD) Database (Machin and Van Reenen,
1998), which has country-sector-level R&D information. Relative to our primary R&D measure,
the ANBERD Database has more limited country-year coverage and relies more on imputations
from firm-level surveys. Our primary R&D measure also allows us to explicitly and transparently
attribute R&D of multi-sector or multinational enterprises to different sectors and countries.

For all the major economies in both data sets, R&D allocation from ANBERD is highly corre-
lated with our primary measure. In the subsample of country-year observations covered in both
data sources, we show that R&D expenses calculated from our firm-level data represents a signifi-
cant proportion of R&D estimated by the ANBERD data, and they follow a very similar aggregate
trend (Figure A.2).

The second robustness check calculates the cross-sector R&D allocation using the innova-
tion output (which is better measured) rather than input: the number of patents produced in
each country-IPC (or country-sector) divided by total number of patents produced in that specific
country.

Table A.1 shows the correlation amongR&Dallocationmeasures used in our empirical analysis—
R&D expense shares using R&D expenditures aggregated from firm-level data; R&D expenditures
surveyed and imputed in the OECD ANBERD database; and patent shares. The correlations are
calculated using 20 top patenting countries in 2010 and their R&D allocation measures across 3-
digit IPC categories. The top panel first aggregate sectoral R&D expenditures across all countries
and then calculate correlation of the sectoral R&D shares. The bottom panel calculate a country-
specific sectoral R&D allocation correlations and then average the correlations across different
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Figure A.2. Comovements of Public Patent Sample and Whole Sample
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Notes. This table documents the time trend of total R&D expenditures calculated from aggregating firm-level R&D
from Compustat, Worldscope, and Datastream and those calculated from aggregating country-sector information
from OECD ANBERD data. For each year, we cover countries that are covered in both databases.

countries. In each panel, the bottom half of the table shows the Pearson correlations; the top half
of the table shows Spearman’s rank correlation, which is equal to the Pearson correlation of the
rank values.

These three proxies for R&D allocations are highly correlated. For example, in Panel A, the
correlation between R&D allocations aggregated from firm-level data and from the OECD scores
above 0.9. The correlation between input shares and the patent output shares is slightly lower,
but still above 0.8. The high correlations among these three measures of R&D allocation shares
translate into the robustness of our quantitative results, as illustrated in Section E.4 of the Online
Appendix.

D Cross-checking Google Patents with PATSTAT
This appendix compares data fromGoogle Patents (accessible to all researchers free of charge) and
the widely used commercial database PATSTAT. These exercises will compare their data coverage,
key variable definitions, and the robustness of empirical analyses in those two databases.

D.1 Basic Data Structure and Coverage
Google Patents and PATSTAT share nearly identical data structure. Both databases have three
levels of innovation units: publication, application, and family.

• Application: The central unit is an innovation application, which is a request filed to a
patent office for patent protection for an invention (which may or may not be granted later).
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Table A.1. Different Measures of Cross-Sector R&D Allocation Are Highly Correlated

Figure 7. R&D By IPC3 - Global in 2010. Corr: 0.9293
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Table 15. Correlation of Different Sources of Real Allocations By IPC3 - Global in 2010
131 Correlation Version

Panel A Share of Aggregated Firm R&D Share of Patents Share of OECD R&D

Share of Aggregated Firm R&D 0.83 0.97
Share of Patents 0.86 0.82
Share of OECD R&D 0.93 0.78

Panel B Share of Aggregated Firm R&D Share of Patents Share of OECD R&D

Share of Aggregated Firm R&D 0.74 0.91
Share of Patents 0.74 0.76
Share of OECD R&D 0.74 0.69

Table 16. Correlation of Different Sources of Real Allocations By IPC3 - Global in 2010
131*20 Correlation Version

Share of Aggregated Firm R&D Share of Patents Share of OECD R&D

Share of Aggregated Firm R&D 0.80 0.91
Share of Patents 0.33 0.78
Share of OECD R&D 0.94 0.29

17

Notes: This table shows the correlation of R&D allocation measures used in our empirical analysis–R&D expense
shares using R&D expenditures aggregated from firm-level data; R&D expenditures surveyed and imputed in the
OECD ANBERD database; and patent shares. The correlations are calculated using 20 top patenting countries in
2010 and their R&D allocation measures across 3-digit IPC categories. The top panel first aggregate sectoral R&D
expenditures across all countries and then calculate correlation of the sectoral R&D shares. The bottom panel calculate
a country-specific sectoral R&D allocation correlations and then average the correlations across different countries.
In each panel, the bottom half of the table shows the Pearson correlations; the top half of the table shows Spearman’s
rank correlation, which is equal to the Pearson correlation of the rank values.

• Publication (most basic unit): After an application is filed, various publications could be
issued.19 These publications can be disclosed patent filings (often 18 months after the initial
filing date), granted patent specification, corrections, etc. In simple terms, publications help
identify key events over an application’s life cycle. The basic units of both Google Patents
and PATSTAT are innovation “publications.”

• Family:20 Applications that cover the same underlying invention are grouped into families.
This often happens when the same invention is filed with multiple patent offices, sometimes
simultaneously, for protections in different countries. All applications (and publications
tracking their life cycle events) in the same family thus have the same priorities, and their
technical content is often regarded as identical or almost identical. Patent family counting
allows us to track unique inventions across different economies.

Figure A.3 presents the sample coverage of publications, the most basic units, for both Google
Patents and PATSTAT in the time series. The coverages of the two data sets are virtually identical.

D.2 Identifying Granted Patents
Publications represent the most comprehensive set of innovation-related documents, yet many of
them are irrelevant for studying innovation—some publications are associated with denied appli-
cations, some are design patents unrelated to scientific or technological progress, etc. As a result, it
is useful to identify granted patents related to new technologies (e.g., utility patents in the USPTO

19In cases that generate no publications (i.e., the invention is treated with absolute confidentiality), the invention
would not be accessible in any database.

20In our paper, we consider the more widely accepted definition of simple family, also called the DOCDB family or
Espacenet patent family.
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Figure A.3. Google Patents v.s. PATSTAT by Year

(a) Applications by Filing Year (b) Applications by Publication Year

system). The two database handle this process largely identically, yielding very comparable patent
sets. However, there are three noticeable differences:

1. Identifying whether a patent is granted mainly relies on the kind code of the patent, which
is defined by the patent office and will change with the reform of the patent system of the
patent office.21 For example, the kind code of patent “US-10001017-B2” is “B2.” The rules
used to identify granted patents differ somewhat in Google Patents vs. PATSTAT.

2. Because PATSTATuses additional legal event data to identify granted patents, patents granted
by some small patent offices can be identified.

3. Other minor differences include missing filing dates or issue dates.

Table A.2 shows the comparison of granted patents between Google Patents and PATSTAT and
list the sources of coverage differences.

21For the detailed meaning of difference kind codes in different patent offices, we refer readers to the document of
format concordance of publication numbers in EPO (see https://www.epo.org/searching-for-patents/data/coverage/
regular.html).
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Table A.2. Difference of Granted Patents Between Google Patents and PATSTAT

Panel (A): For Granted Patents in PATSTAT
# Patents

Patents granted in 1985—2014 19,923,292 100.00%
Overlapped with Google Patents 17,135,611 86.01%
Non-overlapped with Google Patents 2,787,681 13.99% 100.00%

1. Additional patent office data from legal event data 1,456,242 52.24% 100.00%
(1) For patent office ZA 175,317 12.04%
(2) For patent office MX 125,298 8.60%
(3) For patent office PL 125,246 8.60%
(4) For patent office UA 95,956 6.59%
(5) For patent office PT 82,533 5.67%
(6) For patent office DD 79,171 5.44%
(7) For patent office NO 65,312 4.48%
(8) For patent office BR 62,447 4.29%
(9) For patent office HU 61,707 4.24%
(10) For patent office IL 57,165 3.93%
(11) Other patent offices including BG, BY, CH, CO, CS, CU, CZ, 526,090 36.13%
EA, EE, GE, GR, HK, HR, ID, IE, IN, IS, KE, LT, LV, MA, MC,
MD, ME, MN, MT, MY, NI, OA, PE, PH, RO, RS, SA, SE, SG, SI,
SK, SM, SV, TJ, TR, UY, VN, YU, ZW

2. Additional rules used to identify granted patents 1,331,439 47.76% 100.00%
(1) For patent office AT, patents with kind code in [T] 543,805 40.84%
(2) For patent office DE, patents with kind code in [T2] 468,202 35.17%
(3) For patent office KR, patents with kind code in [A] 65,237 4.90%
(4) For patent office DK, patents with kind code in [T3] 58,520 4.40%
(5) For patent office ES, patents with kind code in [A1, A6] 47,354 3.56%
(6) For patent office AU, patents with kind code in [A1, A8] 32,835 2.47%
(7) For patent office FI, patents with kind code in [C] 31,907 2.40%
(8) For patent office CN, patents with kind code in [A] 28,928 2.17%
(9) For patent office AR, patents with kind code in [A1] 24,865 1.87%
(10) For patent office US, patents with kind code in [E] 16,366 1.23%
(11) Other patent offices 13,420 1.01%

Panel (B): For Granted Patents in Google Patents
# Patents

Patents granted in 1985—2014 18,144,529 100.00%
Overlapped with PATSTAT 17,135,612 94.44%
Non-overlapped with PATSTAT 1,008,917 5.56% 100.00%

1. Additional patent office data from legal event data 0 0.00%
2. Additional rules used to identify granted patents 1,008,917 100.00% 100.00%

(1) For patent office DE, patents with kind code in [D1] 883,482 87.57%
(2) For patent office DK, patents with kind code in [T3] 58,118 5.76%
(3) For patent office FI, patents with kind code in [B] 31,585 3.13%
(4) For patent office BE, patents with kind code in [A3, A4, A5, A6, A7] 20,797 2.06%
(5) For patent office KR, patents with kind code in [B1] 6,546 0.65%
(6) For patent office ES, patents with kind code in [B1] 2,399 0.24%
(7) For patent office DZ, patents with kind code in [A1] 1,755 0.17%
(8) For patent office AU, patents with kind code in [B2] 1,458 0.14%
(9) For patent office EP, patents with kind code in [B1] 1,344 0.13%
(10) For patent office SU, patents with kind code in [A1] 932 0.09%
(11) Other patent offices 501 0.05%

Notes. This table compares coverages of granted patents between Google Patents and PATSTAT and the reasons for
discrepancies. A35



Despite those differences, Google Patents and PATSTAT agree on roughly 95% of the identified
granted patents. In Figure A.4, we present the numbers of granted patents in Google Patents and
PATSTAT. We also show this difference across various patent offices and countries of origin.

Figure A.4. Google Patents v.s. PATSTAT Coverage

(a) Granted Patents by Filing Year (b) Granted Patents by Publication Year

(c) Granted Patents by Filing Year (43 WIOD Countries)
(d) Granted Patents by Publication Year (43 WIOD

Countries)

(e) Google Patents vs. PATSTAT By Patent Offices (f) Google Patents vs. PATSTAT By Invention Origin
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D.3 Patent Family
Defining patent family involves the use of information regarding priority dates and priority patents
in the global patent database, among others. Figure A.5 presents the number of patent families
identified in both data sets. They are very comparable to each other, and the minor gap can be
explained by the differences in the number of identified patents described in the previous section.

Figure A.5. Google Patents v.s. PATSTAT: Patent Families by Year

To further check this consistency, in Figure A.6 we show the distribution of the number of
patents in each family in Google Patents and PATSTAT, which again are quite comparable. In
Google Patents, there are 11,693,980 patent families between 1985 and 2014. Among these families,
3,184,884 contain at least two patents, and on average, these families contain 3.99 patents. In
PATSTAT, there are 12,344,446 patent families between 1985 and 2014. Among those families,
3,263,376 of them contain at least two patents, and on average, these families contain 4.34 patents.
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Figure A.6. Google Patents v.s. PATSTAT: Distribution of Number of Patents in Each Family

We next perform a family-to-family comparison between the two databases. First, we focus
on families that only contain one patent: 98.74% of these families in Google Patents are consis-
tent with that in PATSTAT, and 97.79% of those families in PATSTAT are consistent with those in
Google Patents. For patent families with two patents, the share of patents in PATSTAT that are
consistent with Google Patents is 94.11%; the share of patents in Google Patents that is consis-
tent with PATSTAT is 94.38%. Overall, patent families seem to be consistently defined across the
databases at a very high rate.

D.4 Robustness of Results Using Google Patents and PATSTAT
In this section, we present results from using PATSTAT patent data as the base for innovation
measurement and innovation network construction. The overall takeaway is that the results using
PATSTAT are virtually identical to results using Google Patents.

D.4.1 Innovation Network

Results in this subsection show that innovation networks constructed using PATSTAT and Google
Patents are highly correlated (Table A.3), and they have virtually identical properties such as
centrality (Figure A.7) and visualizations (Figure A.8).

Table A.3. Correlations of Between the Innovation Network from Google Patents and PATSTAT

All U.S. Japan China Korea Germany Canada UK France Russia Sweden

0.997 0.998 0.945 0.987 0.975 0.979 0.986 0.989 0.966 0.887 0.934

Notes. This is the correlation between the innovation networks calculated using Google Patents and PATSTAT data.
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Figure A.7. Innovation Centrality and Key Sectors for PASTAT

(a) Innovation Centrality Across IPCs
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Figure 8. Innovation Centrality and Key Sectors

(a) Innovation Centrality Across IPCs
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(b) Top Ten IPCs by Innovation Centrality ai

1 A61 medical or veterinary science; hygiene
2 G06 computing; calculating or counting
3 H01 basic electric elements
4 G01 measuring; testing
5 H04 electric communication technique
6 B60 vehicles in general
7 G02 optics
8 B01 physical or chemical processes or

apparatus in general
9 C08 organic macromolecular compounds; their

preparation or chemical working-up;
compositions based thereon

10 F16 engineering elements or units; general
measures for producing and maintaining
effective functioning of machines or
installations; thermal insulation in general

2.3.2. Knowledge Spillovers

Table 3. Global Knowledge Spillovers - Based on WIOD - PATSTAT

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

mit
0.181*** 0.193*** 0.174*** 0.285*** 0.325*** 0.275***
(0.053) (0.056) (0.054) (0.080) (0.082) (0.081)

ln(R&D)mi,t−1 0.031*** 0.031*** 0.030*** 0.036*** 0.038*** 0.036**
(0.010) (0.010) (0.010) (0.014) (0.014) (0.014)

KnowledgeDown

mit
-0.035 -0.113***
(0.030) (0.039)

KnowledgeU p,IO

mit
0.054 -0.036

(0.067) (0.071)

R2 0.968 0.968 0.969 0.943 0.943 0.944
No. of Country x Sectors 564 564 550 564 564 550
No. of Obs 10549 10549 10315 10549 10549 10315
Fixed Effects Country x Sector, Country x Year, Sector x Year

9

Notes. This figure reproduces Figure 2 in the paper using PATSTAT data. This figure presents the innovation centrality
of different technology classes categorized using IPCs. Panel (a) plots log(ai), and the sectors are ranked in descending
order based on ai. Panel (b) lists the top ten IPCs by their innovation centrality.

Figure A.8. Visualizing the Innovation Network for PATSTAT

(a) IPC-to-IPC (131×131) Network Ω (b) Global Innovation Network Across Country-Sectors
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Notes. This figure reproduces Figure 1 in the paper using PATSTAT data. The left panel visualizes the IPC-to-IPC
networkΩ as a heatmap, with darker colors representing larger matrix entries; sectors are ordered according to their
innovation centrality. The right panel visualizes the global innovation network. Each node is a country-sector, with
size drawn in proportion to patent output. Arrows represent knowledge flows, with width drawn in proportion to
citation shares.
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D.4.2 Knowledge Spillovers

This subsection reproduces results to confirm the mechanism of sectoral innovation activities
being influenced by innovation from global upstream sectors.

Table A.4. Evidence of the Global Innovation Network for Knowledge Spillovers
Based on WIOD - PATSTAT

Figure 9. Countries with More Innovation Hubs Have Better R&D Allocations in 2010
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2. Appendix

Table A.4. Global Knowledge Spillovers - Based on WIOD - PATSTAT

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

mit
0.194*** 0.203*** 0.185*** 0.308*** 0.335*** 0.300***

(0.050) (0.052) (0.051) (0.075) (0.075) (0.076)

ln(R&D Stock)mi,t−1 0.041*** 0.041*** 0.041*** 0.076*** 0.076*** 0.075***

(0.013) (0.013) (0.013) (0.018) (0.018) (0.019)

KnowledgeDown

mit
-0.025 -0.078**

(0.031) (0.039)

KnowledgeU p,IO

mit
0.044 -0.068

(0.067) (0.068)

R2
0.967 0.967 0.968 0.942 0.942 0.942

No. of Country x Sectors 570 570 556 570 570 556

No. of Obs 11011 11011 10771 11011 11011 10771

Fixed Effects Country x Sector, Country x Year, Sector x Year

8

Notes. This table reproduces Table 3 in the paper using PATSTAT data. This table tests the relation between innovation
in a focal sector and past innovation in connected sectors through the innovation network, in an international setting.
We restrict the sample to country-sectors that have at least ten patents over the full sample period. To measure
innovation production (Y ), we use the number of patents and total number of citations. The key variable of interest,
KnowledgeUpit , is the knowledge from upstream, defined in (28). Fixed effects at the country-sector, country-year, and
sector-year levels are included as controls. Columns (2) and (5) include downstream knowledge as a control. Columns
(3) and (6) include knowledge accumulated from upstream sectors in the production network as a control. Standard
errors in parentheses are clustered at the country-sector level. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and
1% levels respectively.
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E Supplementary Results
In this section, we provide additional empirical results.

E.1 Innovation Networks Are Stable Over Time and Across Countries
We first document that innovation networks are stable over time and across innovative countries.
We construct time-varying measures of the innovation network, following the formula in (24) but
using citations made by patents filed during specific time periods, from all countries in our sample.
For the innovation network time-stamped at t, we use new patents and their citations between t−
10 and t−1 to construct the network. Table A.5 shows the correlations between our baseline, time-
invariant measure ωij of the innovation network and these other measures ωijt constructed using
patents filed in specific years t. The bottom half of the table shows the Pearson correlations; the
top half of the table shows Spearman’s rank correlation, which is equal to the Pearson correlation
of the rank values and can be more revealing of network similarities than the Pearson correlation
of values (Liu, 2019). Table A.5 shows that the innovation network is highly stable over time;
the time-varying measures exhibit above 0.8 correlations even when measured using citation data
that are three decades apart, and all year-specific measures are strongly correlated with our time-
invariant baseline measure.

Table A.5. The Innovation Network Is Highly Correlated Over Time

3. Additional Results

3.1. Innovation Network is Stable over Time and across Countries

Table 4. The Innovation Network is Highly Correlated over Time

Time Period All years 2020 2010 2000 1990 1980

All years 0.98 0.98 0.97 0.90 0.89

2020 0.95 0.97 0.93 0.86 0.85

2010 0.96 0.97 0.96 0.88 0.87

2000 0.93 0.92 0.96 0.92 0.90

1990 0.90 0.80 0.84 0.90 0.91

1980 0.81 0.77 0.81 0.87 0.89

Table 5. The Innovation Network is Highly Correlated across Countries

Countries All US Japan China South Korea Germany Russia France UK Canada Netherlands

All 0.98 0.87 0.87 0.84 0.89 0.63 0.86 0.92 0.88 0.81

US 0.95 0.84 0.86 0.82 0.88 0.64 0.85 0.92 0.88 0.80

Japan 0.86 0.83 0.88 0.89 0.85 0.63 0.87 0.86 0.84 0.83

China 0.85 0.86 0.87 0.88 0.85 0.66 0.85 0.87 0.86 0.82

South Korea 0.78 0.77 0.83 0.84 0.84 0.64 0.84 0.85 0.82 0.84

Germany 0.85 0.87 0.81 0.80 0.72 0.64 0.83 0.87 0.83 0.81

Russia 0.62 0.63 0.62 0.62 0.55 0.61 0.65 0.64 0.64 0.66

France 0.91 0.86 0.79 0.77 0.72 0.82 0.57 0.86 0.85 0.83

UK 0.87 0.89 0.85 0.85 0.80 0.86 0.64 0.80 0.88 0.82

Canada 0.86 0.88 0.79 0.81 0.71 0.81 0.59 0.80 0.81 0.81

Netherlands 0.84 0.85 0.79 0.82 0.75 0.79 0.58 0.78 0.79 0.81

10

Notes: This table shows the correlation of innovation networks calculated using different vintages of patent data.
For each decade, all global patents in that decade are included when constructing the innovation network. The
bottom half of the table shows the Pearson correlations; the top half of the table shows Spearman’s rank correlation,
which is equal to the Pearson correlation of the rank values.

Second, we construct country-specific innovation networks. Specifically, we use the same
formula (24) but restrict the sample to all patents from each country. Table A.6 shows the corre-
lations between our baseline, location-invariant measure and the country-specific measures for
the ten countries with the most patents in our sample; Pearson correlations are again shown in
the bottom half of the table whereas Spearman’s rank correlations are shown in the top half. In-
novation networks are highly stable across countries. In particular, our baseline measure, which
is constructed using patents pooled from around the world, has a correlation coefficient of above
0.98 with the network implied by U.S. patents and is also highly correlated (>0.8 rank correlation)
with the innovation networks in Japan, China, Germany, Canada, the U.K., and France. The only
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exception is Russia, whose innovation network is less perfectly correlated with the measures, but
the correlation is still substantial (about 0.6).

Table A.6. The Innovation Network Is Highly Correlated Across Countries

3. Additional Results

3.1. Innovation Network is Stable over Time and across Countries

Table 4. The Innovation Network is Highly Correlated over Time

Time Period All years 2020 2010 2000 1990 1980

All years 0.98 0.98 0.97 0.90 0.89

2020 0.95 0.97 0.93 0.86 0.85

2010 0.96 0.97 0.96 0.88 0.87

2000 0.93 0.92 0.96 0.92 0.90

1990 0.90 0.80 0.84 0.90 0.91

1980 0.81 0.77 0.81 0.87 0.89

Table 5. The Innovation Network is Highly Correlated across Countries

Countries All US Japan China South Korea Germany Russia France UK Canada Netherlands

All 0.98 0.87 0.87 0.84 0.89 0.63 0.86 0.92 0.88 0.81

US 0.95 0.84 0.86 0.82 0.88 0.64 0.85 0.92 0.88 0.80

Japan 0.86 0.83 0.88 0.89 0.85 0.63 0.87 0.86 0.84 0.83

China 0.85 0.86 0.87 0.88 0.85 0.66 0.85 0.87 0.86 0.82

South Korea 0.78 0.77 0.83 0.84 0.84 0.64 0.84 0.85 0.82 0.84

Germany 0.85 0.87 0.81 0.80 0.72 0.64 0.83 0.87 0.83 0.81

Russia 0.62 0.63 0.62 0.62 0.55 0.61 0.65 0.64 0.64 0.66

France 0.91 0.86 0.79 0.77 0.72 0.82 0.57 0.86 0.85 0.83

UK 0.87 0.89 0.85 0.85 0.80 0.86 0.64 0.80 0.88 0.82

Canada 0.86 0.88 0.79 0.81 0.71 0.81 0.59 0.80 0.81 0.81

Netherlands 0.84 0.85 0.79 0.82 0.75 0.79 0.58 0.78 0.79 0.81

10

Notes: This table shows the correlation of innovation networks calculated using patents in the top ten innovative
countries ranked by patent outputs between 2010—2014. When calculating this country-specific innovation
network, all patents of the country across all years are included. The bottom half of the table shows the Pearson
correlations; the top half of the table shows Spearman’s rank correlations, which are equal to the Pearson
correlation of the rank values.

E.2 Knowledge Spillovers Through Innovation Networks—Robustness
This subsection provides additional robustness analyses on innovation diffusion through inno-
vation networks, echoing Section 4.2 in the paper. The main results supporting the important
role of innovation networks in knowledge spillovers are provided in Tables 2 and 3 in the paper.
Below, we present tests to show the robustness of these results. Specifically, these analyses incor-
porate changing U.S. BLS Sectors to IPC (International Patent Classification) classes as the node
in innovation networks (Table A.7), additional measures of innovation output (Table A.11), and
different time horizons to calculate upstream innovation (Tables A.9 and A.12). Finally, we revisit
the dynamic prediction of our key law of motion (25), that upstream knowledge from the more
distant past has less effect on patent output, in Figure (A.9). The figure shows an obsolescence-like
pattern (Ma, 2021) in which past upstream knowledge’s effect on subsequent innovation weakens
over time, precisely as our theory predicts.
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Table A.7. U.S. and Global Evidence of Knowledge Spillover Through Innovation Networks
Based on IPC

Table A.4. Global Knowledge Spillovers - Based on WIOD - PATSTAT

Table A.7. Knowledge Spillovers - Based on 645 4-Digit IPC

US Global

Y = ln(Patents) ln(Cites) ln(Patents) ln(Cites)

(1) (2) (3) (4)

KnowledgeU p

it
0.499*** 0.523*** 0.043*** 0.074***

(0.085) (0.106) (0.010) (0.014)

ln(R&D Stock)i,t−1 0.409*** 0.495*** -0.002 0.002

(0.110) (0.140) (0.005) (0.007)

KnowledgeDown

it
-0.244*** -0.349*** -0.031*** -0.025**

(0.064) (0.090) (0.008) (0.011)

R2
0.960 0.948 0.945 0.902

No. of Sectors 431 431

No. of Country x Sectors 4595 4595

No. of Obs 8620 8620 86224 86224

Country x Sector

Fixed Effects Sector, Year Country x Year

Sector x Year

9

Notes. This table reproduces Tables 2 and 3 in the paper. The key difference is this table uses the country by detailed 4-
digit IPC (international patent classification) class as the unit of nodes instead of country by (BLS orWIOD) industrial
sectors.

Table A.8. U.S. Evidence of Knowledge Spillover Through Innovation Networks
Adding The Impact of Own SectorTable A.8. US Knowledge Spillovers - Add Self-Citations

Y = ln(Patents) ln(Cites) ln(Patent Value)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

KnowledgeU p

it
0.759*** 0.827*** 0.706*** 0.947*** 0.849*** 0.900*** 0.986*** 1.043*** 0.970***

(0.131) (0.172) (0.130) (0.191) (0.270) (0.196) (0.293) (0.382) (0.286)

KnowledgeOwn

it
0.643*** 0.630*** 0.577*** 0.559*** 0.577*** 0.498*** 0.252** 0.242** 0.214

(0.054) (0.053) (0.080) (0.085) (0.080) (0.127) (0.105) (0.105) (0.184)

ln(R&D Stock)i,t−1 0.177** 0.178** 0.164** 0.130 0.128 0.117 0.412*** 0.412*** 0.403**

(0.073) (0.072) (0.076) (0.105) (0.105) (0.108) (0.152) (0.152) (0.154)

KnowledgeU p,IO

it
-0.038 -0.054 -0.145

(0.121) (0.185) (0.212)

KnowledgeOwn,IO

it
0.092 0.088 0.071

(0.083) (0.108) (0.178)

KnowledgeDown

it
-0.125 0.182 -0.105

(0.143) (0.270) (0.304)

R2
0.937 0.937 0.937 0.910 0.910 0.910 0.888 0.888 0.888

No. of Sectors 95 95 95 95 95 95 95 95 95

No. of Obs 1892 1892 1892 1892 1892 1892 1892 1892 1892

Fixed Effects Sector, Year Sector, Year Sector, Year

Table A.9. US Knowledge Spillovers - Use Different τ to Construct the Network Knowledge

Panel (A): τ = 5
Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p,τ=5
it

0.450*** 0.513*** 0.415*** 0.697*** 0.763*** 0.670***

(0.142) (0.161) (0.139) (0.157) (0.163) (0.158)

ln(R&D Stock)i,t−1 0.449*** 0.463*** 0.430*** 0.372*** 0.386*** 0.356***

(0.096) (0.096) (0.092) (0.112) (0.112) (0.109)

KnowledgeDown,τ=5
it

-0.142 -0.148

(0.157) (0.095)

KnowledgeU p,IO

it
0.277* 0.218

(0.164) (0.202)

R2
0.916 0.916 0.917 0.900 0.900 0.900

No. of Sectors 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1900 1900 1900

Fixed Effects Sector, Year Sector, Year

Panel (B): τ = 20
Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p,τ=20
it

0.644*** 0.694*** 0.592*** 0.858*** 0.912*** 0.819***

(0.185) (0.202) (0.180) (0.207) (0.215) (0.200)

ln(R&D Stock)i,t−1 0.410*** 0.418*** 0.397*** 0.323*** 0.332*** 0.313***

(0.099) (0.100) (0.095) (0.113) (0.113) (0.110)

KnowledgeDown,τ=20
it

-0.123 -0.133

(0.164) (0.103)

KnowledgeU p,IO

it
0.238 0.178

(0.165) (0.201)

R2
0.917 0.917 0.918 0.900 0.900 0.900

No. of Sectors 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1900 1900 1900

Fixed Effects Sector, Year Sector, Year

10

Notes. This table reproduces Table 2 in the paper by incorporating patenting activities from past innovation from
own sector.
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Table A.9. U.S. Evidence of Knowledge Spillover Through Innovation Networks
Different Knowledge Periods

Table A.8. US Knowledge Spillovers - Add Self-Citations

Y = ln(Patents) ln(Cites) ln(Patent Value)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

KnowledgeU p

it
0.759*** 0.827*** 0.706*** 0.947*** 0.849*** 0.900*** 0.986*** 1.043*** 0.970***

(0.131) (0.172) (0.130) (0.191) (0.270) (0.196) (0.293) (0.382) (0.286)

KnowledgeOwn

it
0.643*** 0.630*** 0.577*** 0.559*** 0.577*** 0.498*** 0.252** 0.242** 0.214

(0.054) (0.053) (0.080) (0.085) (0.080) (0.127) (0.105) (0.105) (0.184)

ln(R&D Stock)i,t−1 0.177** 0.178** 0.164** 0.130 0.128 0.117 0.412*** 0.412*** 0.403**

(0.073) (0.072) (0.076) (0.105) (0.105) (0.108) (0.152) (0.152) (0.154)

KnowledgeU p,IO

it
-0.038 -0.054 -0.145

(0.121) (0.185) (0.212)

KnowledgeOwn,IO

it
0.092 0.088 0.071

(0.083) (0.108) (0.178)

KnowledgeDown

it
-0.125 0.182 -0.105

(0.143) (0.270) (0.304)

R2
0.937 0.937 0.937 0.910 0.910 0.910 0.888 0.888 0.888

No. of Sectors 95 95 95 95 95 95 95 95 95

No. of Obs 1892 1892 1892 1892 1892 1892 1892 1892 1892

Fixed Effects Sector, Year Sector, Year Sector, Year

Table A.9. US Knowledge Spillovers - Use Different τ to Construct the Network Knowledge

Panel (A): τ = 5
Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p,τ=5
it

0.450*** 0.513*** 0.415*** 0.697*** 0.763*** 0.670***

(0.142) (0.161) (0.139) (0.157) (0.163) (0.158)

ln(R&D Stock)i,t−1 0.449*** 0.463*** 0.430*** 0.372*** 0.386*** 0.356***

(0.096) (0.096) (0.092) (0.112) (0.112) (0.109)

KnowledgeDown,τ=5
it

-0.142 -0.148

(0.157) (0.095)

KnowledgeU p,IO

it
0.277* 0.218

(0.164) (0.202)

R2
0.916 0.916 0.917 0.900 0.900 0.900

No. of Sectors 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1900 1900 1900

Fixed Effects Sector, Year Sector, Year

Panel (B): τ = 20
Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p,τ=20
it

0.644*** 0.694*** 0.592*** 0.858*** 0.912*** 0.819***

(0.185) (0.202) (0.180) (0.207) (0.215) (0.200)

ln(R&D Stock)i,t−1 0.410*** 0.418*** 0.397*** 0.323*** 0.332*** 0.313***

(0.099) (0.100) (0.095) (0.113) (0.113) (0.110)

KnowledgeDown,τ=20
it

-0.123 -0.133

(0.164) (0.103)

KnowledgeU p,IO

it
0.238 0.178

(0.165) (0.201)

R2
0.917 0.917 0.918 0.900 0.900 0.900

No. of Sectors 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1900 1900 1900

Fixed Effects Sector, Year Sector, Year

10

Notes. This table reproduces Table 2 in the paper. The key difference is using different τ periods to calculate knowledge
accumulated through the innovation network. Table 2 uses τ = 10, while this table uses alternative values of τ = 5
and τ = 10.
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Table A.10. U.S. Evidence of Knowledge Spillover Through Innovation Networks
Exponential Knowledge DiscountingTable A.10. US Knowledge Spillovers - Using Depreciated Version of Knowledge Stock

Y = ln(Patents) ln(Cites) ln(Patent Value)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

KnowledgeU p,depreciation

it
0.507*** 0.563*** 0.466*** 0.766*** 0.824*** 0.734*** 0.913*** 0.952*** 0.916***

(0.168) (0.189) (0.163) (0.181) (0.190) (0.177) (0.282) (0.292) (0.281)

ln(R&D Stock)i,t−1 0.431*** 0.439*** 0.414*** 0.344*** 0.353*** 0.331*** 0.503*** 0.509*** 0.504***

(0.100) (0.101) (0.096) (0.115) (0.115) (0.112) (0.146) (0.148) (0.145)

KnowledgeDown,depreciation

it
-0.123 -0.127 -0.085

(0.159) (0.097) (0.117)

KnowledgeU p,IO

it
0.271 0.211 -0.015

(0.165) (0.203) (0.206)

R2
0.916 0.916 0.917 0.900 0.900 0.900 0.886 0.886 0.886

No. of Sectors 95 95 95 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1900 1900 1900 1900 1900 1900

Fixed Effects Sector, Year Sector, Year Sector, Year

Table A.11. US Spillover - Additional Innovation Measure

Y = ln(Patents)

(1) (2) (3) (4)

KnowledgeU p

it
0.909*** 0.945*** 0.914*** 1.435***

(0.294) (0.306) (0.294) (0.437)

ln(R&D Stock)i,t−1 0.500*** 0.505*** 0.502*** 0.471**

(0.146) (0.148) (0.146) (0.188)

KnowledgeDown

it
-0.078

(0.114)

KnowledgeU p,IO

it
-0.027

(0.208)

ln(R&DTaxPrice)mi,t−1 9.757

(9.215)

Specification OLS OLS OLS IV 2nd Stage

IV 1st Stage F-statistics 427

R2
0.886 0.886 0.886 0.112

No. of Sectors 95 95 95 95

No. of Obs 1900 1900 1900 1140

Fixed Effects Sector, Year

11

Notes. This table reproduces Table 2 in the paper by incorporating exponential discounting of knowledge stocks.

Table A.11. U.S. Evidence of Knowledge Spillover Through Innovation Networks
Additional Innovation Measure

Table A.10. US Knowledge Spillovers - Using Depreciated Version of Knowledge Stock

Y = ln(Patents) ln(Cites) ln(Patent Value)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

KnowledgeU p,depreciation

it
0.507*** 0.563*** 0.466*** 0.766*** 0.824*** 0.734*** 0.913*** 0.952*** 0.916***

(0.168) (0.189) (0.163) (0.181) (0.190) (0.177) (0.282) (0.292) (0.281)

ln(R&D Stock)i,t−1 0.431*** 0.439*** 0.414*** 0.344*** 0.353*** 0.331*** 0.503*** 0.509*** 0.504***

(0.100) (0.101) (0.096) (0.115) (0.115) (0.112) (0.146) (0.148) (0.145)

KnowledgeDown,depreciation

it
-0.123 -0.127 -0.085

(0.159) (0.097) (0.117)

KnowledgeU p,IO

it
0.271 0.211 -0.015

(0.165) (0.203) (0.206)

R2
0.916 0.916 0.917 0.900 0.900 0.900 0.886 0.886 0.886

No. of Sectors 95 95 95 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1900 1900 1900 1900 1900 1900

Fixed Effects Sector, Year Sector, Year Sector, Year

Table A.11. US Spillover - Additional Innovation Measure

Y = ln(Patents)

(1) (2) (3) (4)

KnowledgeU p

it
0.909*** 0.945*** 0.914*** 1.435***

(0.294) (0.306) (0.294) (0.437)

ln(R&D Stock)i,t−1 0.500*** 0.505*** 0.502*** 0.471**

(0.146) (0.148) (0.146) (0.188)

KnowledgeDown

it
-0.078

(0.114)

KnowledgeU p,IO

it
-0.027

(0.208)

ln(R&DTaxPrice)mi,t−1 9.757

(9.215)

Specification OLS OLS OLS IV 2nd Stage

IV 1st Stage F-statistics 427

R2
0.886 0.886 0.886 0.112

No. of Sectors 95 95 95 95

No. of Obs 1900 1900 1900 1140

Fixed Effects Sector, Year

11

Notes. This table reproduces Table 2 in the paper with the additional innovation measure of patent value from (Kogan
et al., 2017) based on the stock market reaction to patent approval.
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Table A.12. Global Evidence of Knowledge Spillover Through Innovation Networks
Different Knowledge PeriodsTable A.12. Global Knowledge Spillovers - Use Different τ to Construct the Network Knowledge

Panel (A): τ = 5
Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p,τ=5
mit

0.101** 0.111** 0.092* 0.223*** 0.243*** 0.219***

(0.047) (0.049) (0.047) (0.070) (0.075) (0.071)

ln(R&D Stock)i,t−1 0.044*** 0.044*** 0.044*** 0.085*** 0.085*** 0.084***

(0.013) (0.013) (0.013) (0.018) (0.018) (0.018)

KnowledgeDown,τ=5
mit

-0.017 -0.035

(0.032) (0.046)

KnowledgeU p,IO

mit
0.070 -0.055

(0.065) (0.068)

R2
0.968 0.968 0.968 0.942 0.943 0.943

No. of Country x Sectors 570 570 556 570 570 556

No. of Obs 11014 11014 10774 11014 11014 10774

Fixed Effects Country x Sector, Country x Year, Sector x Year

Panel (B): τ = 20
Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p,τ=20
mit

0.204*** 0.232*** 0.201*** 0.425*** 0.472*** 0.424***

(0.057) (0.059) (0.058) (0.080) (0.083) (0.081)

ln(R&D Stock)i,t−1 0.043*** 0.044*** 0.043*** 0.084*** 0.084*** 0.083***

(0.013) (0.013) (0.013) (0.018) (0.018) (0.018)

KnowledgeDown,τ=20
mit

-0.079* -0.134*

(0.045) (0.069)

KnowledgeU p,IO

mit
0.072 -0.051

(0.064) (0.068)

R2
0.968 0.968 0.968 0.943 0.943 0.943

No. of Country x Sectors 570 570 556 570 570 556

No. of Obs 11014 11014 10774 11014 11014 10774

Fixed Effects Country x Sector, Country x Year, Sector x Year

Table A.13. Knowledge Spillover via Innovation Network and Production Network

Y = ln(Patents) ln(Cites) ln(Patent Value)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

it
0.509*** 0.756*** 0.914***

(0.169) (0.192) (0.294)

ln(R&D Stock)i,t−1 0.410*** 0.442*** 0.328*** 0.375*** 0.502*** 0.559***

(0.096) (0.094) (0.111) (0.107) (0.146) (0.148)

KnowledgeDown

it

KnowledgeU p,IO

it
0.258 0.338** 0.198 0.316 -0.027 0.117

(0.165) (0.166) (0.203) (0.205) (0.208) (0.218)

R2
0.917 0.914 0.900 0.896 0.886 0.881

No. of Sectors 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1900 1900 1900

Fixed Effects Sector, Year Sector, Year Sector, Year

12

Notes. This table reproduces Table 3 in the paper. The key difference is this table uses different τ periods to calculate
knowledge accumulated through the innovation network. Table 3 uses τ = 10, while this table uses alternative values
of τ = 5 and τ = 10.
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Table A.13. U.S. Evidence of Knowledge Spillover Through Innovation Networks
Exploring the I-O Linkages

Table A.12. Global Knowledge Spillovers - Use Different τ to Construct the Network Knowledge

Panel (A): τ = 5
Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p,τ=5
mit

0.101** 0.111** 0.092* 0.223*** 0.243*** 0.219***

(0.047) (0.049) (0.047) (0.070) (0.075) (0.071)

ln(R&D Stock)i,t−1 0.044*** 0.044*** 0.044*** 0.085*** 0.085*** 0.084***

(0.013) (0.013) (0.013) (0.018) (0.018) (0.018)

KnowledgeDown,τ=5
mit

-0.017 -0.035

(0.032) (0.046)

KnowledgeU p,IO

mit
0.070 -0.055

(0.065) (0.068)

R2
0.968 0.968 0.968 0.942 0.943 0.943

No. of Country x Sectors 570 570 556 570 570 556

No. of Obs 11014 11014 10774 11014 11014 10774

Fixed Effects Country x Sector, Country x Year, Sector x Year

Panel (B): τ = 20
Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p,τ=20
mit

0.204*** 0.232*** 0.201*** 0.425*** 0.472*** 0.424***

(0.057) (0.059) (0.058) (0.080) (0.083) (0.081)

ln(R&D Stock)i,t−1 0.043*** 0.044*** 0.043*** 0.084*** 0.084*** 0.083***

(0.013) (0.013) (0.013) (0.018) (0.018) (0.018)

KnowledgeDown,τ=20
mit

-0.079* -0.134*

(0.045) (0.069)

KnowledgeU p,IO

mit
0.072 -0.051

(0.064) (0.068)

R2
0.968 0.968 0.968 0.943 0.943 0.943

No. of Country x Sectors 570 570 556 570 570 556

No. of Obs 11014 11014 10774 11014 11014 10774

Fixed Effects Country x Sector, Country x Year, Sector x Year

Table A.13. Knowledge Spillover via Innovation Network and Production Network

Y = ln(Patents) ln(Cites) ln(Patent Value)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

it
0.509*** 0.756*** 0.914***

(0.169) (0.192) (0.294)

ln(R&D Stock)i,t−1 0.410*** 0.442*** 0.328*** 0.375*** 0.502*** 0.559***

(0.096) (0.094) (0.111) (0.107) (0.146) (0.148)

KnowledgeDown

it

KnowledgeU p,IO

it
0.258 0.338** 0.198 0.316 -0.027 0.117

(0.165) (0.166) (0.203) (0.205) (0.208) (0.218)

R2
0.917 0.914 0.900 0.896 0.886 0.881

No. of Sectors 95 95 95 95 95 95

No. of Obs 1900 1900 1900 1900 1900 1900

Fixed Effects Sector, Year Sector, Year Sector, Year

12

Notes. This table reproduces Table 2 in the paper by incorporating standalone knowledge spillovers from the I-O
network in columns (2), (4), and (6).

Figure A.9. Dynamic Responses of Innovation Output to Upstream KnowledgeFigure A.9. Dynamic Responses of Innovation Output to Upstream Knowledge
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Table A.15. Knowledge Spillovers - First Stage IV Results

United States Global

Y = KnowledgeU p

it
KnowledgeU p

mit

(1) (2)

KnowledgeU p,IV
it

1.092***

(0.053)

KnowledgeU p,IV
mit

0.542***

(0.045)

ln(R&D Stock)i,t−1 0.060*** 0.001

((0.018)) (0.007)

Fixed Effects

Sector Yes

Year Yes

Country x Sector Yes

Country x Year Yes

Sector x Year Yes

F-statistics 427 148

R2
0.984 0.982

No. of Sectors 95

No. of Country x Sectors 282

No. of Obs 1140 4587

Notes. US: 1995-2006, Global: 1980-2006.

13

Notes. This figure presents how the focal sector’s innovations dynamically respond to past innovations from upstream
sectors in the innovation network. The coefficients are from regressions of focal sectors’ innovations at times t + 1
through t+10 on upstream knowledge measured at time-t. We control for log R&D with time-1 lag as well as sector
and year fixed effects. The half-life of the dynamic effects is about 4 years.

E.3 Using R&D Tax Credit as an Instrument for Upstream R&D
Our analysis on the impact of upstream innovation (i.e., Tables 2 and 3) is subject to the concern
of common shocks: a group of sectors connected to each other via citation linkages may face
similar demand, supply, and investment opportunities, leading to co-movements of innovation
activities. Serial correlations in these common shocks would lead to a positive coefficient β1 in
regression (27) even without cross-sector knowledge spillovers. This is a classic version of the
“reflection problem” documented in Manski (1993) and, more relevant to our setting, in Bloom
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et al. (2013). As noted in Bloom et al. (2013), since knowledge spillovers through the innovation
network are entered lagged at least one year (and up to ten years), and because fixed effects and
other controls are included in the estimation, the potential bias is likely small. Nevertheless, to
further resolve this issue, we consider an instrumental variable strategy based on R&D tax credits,
a methodwidely used in innovation literature. Here we present only the basic framework and how
we adapt the strategy to our setting. We refer readers to a classic use case in Bloom et al. (2013)
and the Online Appendix of the paper.

This instrumental variable strategy shocks R&D activities using the user cost of R&D capital,
which in turn is often closely tied to tax policies and subsidies like R&D tax credit. User cost
of R&D is affected by two types of R&D tax credit, federal tax rules that interact with different
firms differently (e.g., based on past R&D expenses, etc.), and state-level tax credits, deprecia-
tion allowances, and corporation taxes that affect firms differently based on the location of R&D
activities.

• For state-level tax credits, we obtain the state-by-year R&D tax price data, available for
1970 to 2006, from Wilson (2009). These data are further aggregated to sector-year-level
tax price of R&D by calculating the weighted sectoral average, which is weighted using the
total number of inventors in a sector who work in each state (ten-year average of inventor
shares). In other words, if a sector has more inventor weight in a high tax credit state (thus
the user cost is lower), the sector will have a lower user cost of R&D in our aggregation.
Using inventor shares is common practice in this literature as R&D labor cost is often the
key target of R&D tax policies.

• For the federal tax component, which is shown to be less powerful for explaining sector-level
R&D activities in our setting, we follow the approach in Bloom et al. (2013) and construct
a firm-year level federal tax-driven user cost of R&D. This firm-year-level measure is then
further aggregated to sector-year level byweighting each firm according to its sizemeasured
using the number of inventors.

The R&D user cost can also be calculated at the country-sector-year level. For this purpose, we
obtain data from Thomson (2017), who provides the user cost estimates for different types of
R&D input, in particular labor and capital, in different country-years. Following Thomson (2017),
we calculate the tax price at the country-sector-year level using the weight-average tax price of
different expenditure types with lagged expenditure share on those types as weights. For example,
the “Apparel, dressing, and dyeing of fur” industry has a capital-labor R&D composition ratio of
92% to 8%, then the R&D user cost is a weighted average using those ratios. This estimate covers
25 WIOD countries from 1980 to 2006.

We implement the empirical strategy by first projecting sectoral innovation on the instrument.
Table A.14 demonstrates that the instruments have power in predicting sectoral innovation output
both in the U.S. (column 1) and globally (column 2). In both models, we control for fixed effects
at the cross-section and in the time series. From these models, we calculate sectoral innovation
predicted by these tax credits, lnnTAXit .
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Table A.14. Predicting Sectoral Patent Count Using R&D Tax Credits

3.2.2. Using R&D Tax Credit as an Instrument for Upstream R&D

Table 17. Predict Patent Count Using R&D Tax Credits

United States Global

Y = ln(Patents) ln(Patents)
(1) (2)

ln(User Cost o f R&D Capital) -11.774*** -0.288**
(4.041) (0.134)

Fixed Effects
Sector Yes
Year Yes
Country x Sector Yes
Country x Year Yes
Sector x Year Yes

R2 0.866 0.969
No. of Sectors 158
No. of Country x Sectors 1,242
No. of Obs 4,615 18,799

Notes.

• US state tax credit is obtained from Wilson (2009), which incorporates state level corporate income taxes,

depreciation allowances, and R&D tax credits. Following Bloom et al. (2013), we use the state R&D tax price

together with inventor locations to approximate where the R&D occurs oo construct the R&D tax price at the

sector-year level. The US R&D tax data is available from 1970 to 2006.

– Wilson (2009, RES) Beggar Thy Neighbor- The In-State, Out-of-State, and Aggregate Effects of R&D

Tax Credits

– Bloom, Schankerman, and Van Reenen (2013, ECTA) Identifying Technology Spillovers and Product

Market Rivalry

• Global tax credit is obtained from Thomson (2017). Follow Thomson (2017), we calculate the tax price at the

country-sector-year level using the weight-average tax price of different expenditure types (such as labor and

capital) with lagged expenditure share as weights. It covers 25 WIOD countries from 1980 to 2006.

– Thomson (2017, REST) The Effectiveness of R&D Tax Credits

18

Notes. This table presents evidence that the user cost of R&D capital predicts patent output. Standard errors are
clustered at the sector and year levels.

In the main 2SLS analysis, for each sector, we calculate upstream knowledge using the same
equation as in (26), replacing the realized sectoral innovation with the fitted values lnnTAXit . We
denote this fitted value of the knowledge as KnowledgeUp,TAXit . The variable KnowledgeUp,TAXit is
then used as an instrument in the analysis in (27). We report the first-stage regressions in Table
A.15, and domestic and global versions of the knowledge diffusion results in Tables A.16 and A.17,
corresponding to Tables 2 and 3 in the paper.
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Table A.15. Predicting Sectoral Patent Count Using R&D Tax Credits

Figure A.9. Dynamic Responses of Innovation Output to Upstream Knowledge
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Table A.15. Knowledge Spillovers - First Stage IV Results

United States Global

Y = KnowledgeU p

it
KnowledgeU p

mit

(1) (2)

KnowledgeU p,IV
it

1.092***

(0.053)

KnowledgeU p,IV
mit

0.542***

(0.045)

ln(R&D Stock)i,t−1 0.060*** 0.001

((0.018)) (0.007)

Fixed Effects

Sector Yes

Year Yes

Country x Sector Yes

Country x Year Yes

Sector x Year Yes

F-statistics 427 148

R2
0.984 0.982

No. of Sectors 95

No. of Country x Sectors 282

No. of Obs 1140 4587

Notes. US: 1995-2006, Global: 1980-2006.

13

Notes. The first-stage regression, instrumental variable is the fitted value of upstream innovation accumulated
through the innovation network. Standard errors are clustered at the sector and year levels.
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Table A.16. US Evidence of Knowledge Spillovers Through Innovation Networks–Second-Stage
IV ResultsTable A.16. US Knowledge Spillovers - Second Stage IV Results - Based on BLS Sector

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

it
0.583** 0.594** 0.591** 0.917*** 0.931*** 0.926***

(0.269) (0.269) (0.265) (0.289) (0.288) (0.287)

ln(R&D Stock)i,t−1 0.408*** 0.424*** 0.388*** 0.206 0.225 0.183

(0.111) (0.123) (0.107) (0.133) (0.146) (0.134)

KnowledgeDown

it
-0.057 -0.068

(0.134) (0.110)

KnowledgeU p,IO

it
0.248 0.282

(0.357) (0.407)

R2
0.169 0.169 0.171 0.092 0.093 0.090

No. of Sectors 95 95 95 95 95 95

No. of Obs 1140 1140 1140 1140 1140 1140

Fixed Effects Sector, Year Sector, Year

Notes. Sample period is 1995-2006, and the sector sample is the same as that in Table ??.

Table A.17. Global Knowledge Spillovers - Second Stage IV Results - Based on WIOD Sector

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

mit
0.226** 0.235** 0.255** 0.453*** 0.462*** 0.485***

(0.113) (0.106) (0.116) (0.143) (0.142) (0.149)

ln(R&D Stock)i,t−1 0.079*** 0.079*** 0.081*** 0.083*** 0.083*** 0.085***

(0.020) (0.020) (0.020) (0.030) (0.030) (0.030)

KnowledgeDown

mit
-0.020 -0.024

(0.085) (0.116)

KnowledgeU p,IO

mit
-0.213 -0.205

(0.390) (0.392)

R2
0.035 0.036 0.022 0.028 0.029 0.023

No. of Country x Sectors 282 282 277 282 282 277

No. of Obs 4587 4587 4527 4587 4587 4527

Fixed Effects Country x Sector, Country x Year, Sector x Year

Notes. Sample period is 1980-2006, and the country-sector sample is the same as that in Table ??.

Table A.18. Unilaterally Optimal R&D Allocations Differ Significantly Across Countries

Countries US Japan China South Korea Germany Russia France UK Canada Netherlands EU

US 0.97 0.90 0.93 0.95 0.84 0.94 0.94 0.92 0.95 0.95
Japan 0.91 0.93 0.94 0.96 0.87 0.94 0.94 0.93 0.94 0.96
China 0.87 0.93 0.95 0.91 0.91 0.91 0.90 0.91 0.90 0.94
South Korea 0.85 0.89 0.84 0.92 0.83 0.90 0.90 0.88 0.89 0.92
Germany 0.77 0.89 0.79 0.82 0.85 0.97 0.96 0.94 0.97 0.99
Russia 0.70 0.76 0.86 0.60 0.57 0.84 0.82 0.90 0.86 0.86
France 0.81 0.89 0.87 0.73 0.73 0.76 0.98 0.94 0.97 0.98
UK 0.84 0.89 0.86 0.73 0.73 0.76 0.99 0.94 0.97 0.98
Canada 0.78 0.88 0.88 0.72 0.71 0.84 0.97 0.96 0.95 0.95
Netherlands 0.83 0.89 0.87 0.74 0.72 0.76 0.98 0.97 0.96 0.97
EU 0.87 0.96 0.91 0.82 0.90 0.74 0.95 0.95 0.93 0.94

14

Notes. Second-stage regression. Same setting as in Table 2.

Table A.17. Global Evidence of Knowledge Spillovers Through Innovation
Networks–Second-Stage IV Results

Table A.16. US Knowledge Spillovers - Second Stage IV Results - Based on BLS Sector

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

it
0.583** 0.594** 0.591** 0.917*** 0.931*** 0.926***

(0.269) (0.269) (0.265) (0.289) (0.288) (0.287)

ln(R&D Stock)i,t−1 0.408*** 0.424*** 0.388*** 0.206 0.225 0.183

(0.111) (0.123) (0.107) (0.133) (0.146) (0.134)

KnowledgeDown

it
-0.057 -0.068

(0.134) (0.110)

KnowledgeU p,IO

it
0.248 0.282

(0.357) (0.407)

R2
0.169 0.169 0.171 0.092 0.093 0.090

No. of Sectors 95 95 95 95 95 95

No. of Obs 1140 1140 1140 1140 1140 1140

Fixed Effects Sector, Year Sector, Year

Notes. Sample period is 1995-2006, and the sector sample is the same as that in Table ??.

Table A.17. Global Knowledge Spillovers - Second Stage IV Results - Based on WIOD Sector

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

mit
0.226** 0.235** 0.255** 0.453*** 0.462*** 0.485***

(0.113) (0.106) (0.116) (0.143) (0.142) (0.149)

ln(R&D Stock)i,t−1 0.079*** 0.079*** 0.081*** 0.083*** 0.083*** 0.085***

(0.020) (0.020) (0.020) (0.030) (0.030) (0.030)

KnowledgeDown

mit
-0.020 -0.024

(0.085) (0.116)

KnowledgeU p,IO

mit
-0.213 -0.205

(0.390) (0.392)

R2
0.035 0.036 0.022 0.028 0.029 0.023

No. of Country x Sectors 282 282 277 282 282 277

No. of Obs 4587 4587 4527 4587 4587 4527

Fixed Effects Country x Sector, Country x Year, Sector x Year

Notes. Sample period is 1980-2006, and the country-sector sample is the same as that in Table ??.

Table A.18. Unilaterally Optimal R&D Allocations Differ Significantly Across Countries

Countries US Japan China South Korea Germany Russia France UK Canada Netherlands EU

US 0.97 0.90 0.93 0.95 0.84 0.94 0.94 0.92 0.95 0.95
Japan 0.91 0.93 0.94 0.96 0.87 0.94 0.94 0.93 0.94 0.96
China 0.87 0.93 0.95 0.91 0.91 0.91 0.90 0.91 0.90 0.94
South Korea 0.85 0.89 0.84 0.92 0.83 0.90 0.90 0.88 0.89 0.92
Germany 0.77 0.89 0.79 0.82 0.85 0.97 0.96 0.94 0.97 0.99
Russia 0.70 0.76 0.86 0.60 0.57 0.84 0.82 0.90 0.86 0.86
France 0.81 0.89 0.87 0.73 0.73 0.76 0.98 0.94 0.97 0.98
UK 0.84 0.89 0.86 0.73 0.73 0.76 0.99 0.94 0.97 0.98
Canada 0.78 0.88 0.88 0.72 0.71 0.84 0.97 0.96 0.95 0.95
Netherlands 0.83 0.89 0.87 0.74 0.72 0.76 0.98 0.97 0.96 0.97
EU 0.87 0.96 0.91 0.82 0.90 0.74 0.95 0.95 0.93 0.94

14

Notes. Second-stage regression. Same setting as in Table 3.
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E.4 Additional Results on R&D Misallocation
This subsection presents additional results that quantify R&D misallocation, supplementing Sec-
tion 5.

• Tables A.18 and A.19 present cross-country and time-series correlations of optimal R&D
allocation γ.

• Figure A.10 presents US model fits with some labeled sectors.

• Figure A.11 presents analysis using alternative parameters of ρ/λ; Figure A.12 presents
analysis using data from different years.

• Figures A.13, A.14, and A.15 present analysis using patent outputs and OECD R&D expen-
diture shares as innovation allocation measures, supplementing analysis using R&D expen-
diture shares (aggregated from firm-level data) in the paper.

• Figure A.16 provides additional analysis on the time series of R&Dmisallocation and implied
welfare cost.

• Table A.20 summarizes the robustness of our quantitative analysis across different specifi-
cations of Ω, ρ, and λ.

• Figure A.17 presents evidence on R&D misallocation within 1-digit IPC patent classes.
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Table A.18. Unilaterally Optimal R&D Allocations Across Countries

Table A.16. US Knowledge Spillovers - Second Stage IV Results - Based on BLS Sector

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

it
0.583** 0.594** 0.591** 0.917*** 0.931*** 0.926***

(0.269) (0.269) (0.265) (0.289) (0.288) (0.287)

ln(R&D Stock)i,t−1 0.408*** 0.424*** 0.388*** 0.206 0.225 0.183

(0.111) (0.123) (0.107) (0.133) (0.146) (0.134)

KnowledgeDown

it
-0.057 -0.068

(0.134) (0.110)

KnowledgeU p,IO

it
0.248 0.282

(0.357) (0.407)

R2
0.169 0.169 0.171 0.092 0.093 0.090

No. of Sectors 95 95 95 95 95 95

No. of Obs 1140 1140 1140 1140 1140 1140

Fixed Effects Sector, Year Sector, Year

Notes. Sample period is 1995-2006, and the sector sample is the same as that in Table ??.

Table A.17. Global Knowledge Spillovers - Second Stage IV Results - Based on WIOD Sector

Y = ln(Patents) ln(Cites)

(1) (2) (3) (4) (5) (6)

KnowledgeU p

mit
0.226** 0.235** 0.255** 0.453*** 0.462*** 0.485***

(0.113) (0.106) (0.116) (0.143) (0.142) (0.149)

ln(R&D Stock)i,t−1 0.079*** 0.079*** 0.081*** 0.083*** 0.083*** 0.085***

(0.020) (0.020) (0.020) (0.030) (0.030) (0.030)

KnowledgeDown

mit
-0.020 -0.024

(0.085) (0.116)

KnowledgeU p,IO

mit
-0.213 -0.205

(0.390) (0.392)

R2
0.035 0.036 0.022 0.028 0.029 0.023

No. of Country x Sectors 282 282 277 282 282 277

No. of Obs 4587 4587 4527 4587 4587 4527

Fixed Effects Country x Sector, Country x Year, Sector x Year

Notes. Sample period is 1980-2006, and the country-sector sample is the same as that in Table ??.

Table A.18. Unilaterally Optimal R&D Allocations Differ Significantly Across Countries

Countries US Japan China South Korea Germany Russia France UK Canada Netherlands EU

US 0.97 0.90 0.93 0.95 0.84 0.94 0.94 0.92 0.95 0.95
Japan 0.91 0.93 0.94 0.96 0.87 0.94 0.94 0.93 0.94 0.96
China 0.87 0.93 0.95 0.91 0.91 0.91 0.90 0.91 0.90 0.94
South Korea 0.85 0.89 0.84 0.92 0.83 0.90 0.90 0.88 0.89 0.92
Germany 0.77 0.89 0.79 0.82 0.85 0.97 0.96 0.94 0.97 0.99
Russia 0.70 0.76 0.86 0.60 0.57 0.84 0.82 0.90 0.86 0.86
France 0.81 0.89 0.87 0.73 0.73 0.76 0.98 0.94 0.97 0.98
UK 0.84 0.89 0.86 0.73 0.73 0.76 0.99 0.94 0.97 0.98
Canada 0.78 0.88 0.88 0.72 0.71 0.84 0.97 0.96 0.95 0.95
Netherlands 0.83 0.89 0.87 0.74 0.72 0.76 0.98 0.97 0.96 0.97
EU 0.87 0.96 0.91 0.82 0.90 0.74 0.95 0.95 0.93 0.94

14
Notes. This table shows the pair-wise correlations of optimal R&D allocations γ across countries using country-
specific statistics as of 2010. The lower triangular panel shows the Pearson correlation coefficients; the upper trian-
gular panel shows Spearman’s rank correlation.

Table A.19. Unilaterally Optimal US R&D Allocations of Across TimeTable A.19. Unilaterally Optimal R&D Allocations for US is Highly Correlated over Time

Time Period 2020 2010 2000 1990 1980

2020 1.00 0.99 0.98 0.98
2010 0.99 0.99 0.98 0.98
2000 0.97 0.97 1.00 0.99
1990 0.96 0.94 0.99 1.00
1980 0.94 0.93 0.99 1.00

15

Notes. This table shows the pair-wise correlations of optimal R&D allocations γ across different time periods using
U.S. statistics during the specific year. The lower triangular panel shows the Pearson correlation coefficients; the
upper triangular panel shows Spearman’s rank correlation.
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Figure A.10. U.S. Actual R&D Allocation vs. Optimal AllocationγUS

Figure 4. Optimal R&D Allocations for Different Countries
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Figure 5. U.S. Sectoral R&D and Patent Output Align Well With γUS in 2010
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• Share of R&D: slope = 1.112, t-stat = 7.637, F-stat (beta = 1) = .593

• Share of patents: slope = 1.051, t-stat = 8.203, F-stat (beta = 1) = .159

5

Notes. This figure adds sector labels to Figure 5 in the paper. It shows scatter plots of real-world sectoral R&D
expenditure shares (left panel) and patent output shares (right panel) against optimal R&D allocation shares, γUS ,
for the U.S. in 2010-2014. The solid line is the linear fit; the dashed line is the 45-degree line. For visual clarity, we
exclude three outlier sectors that account for >7.5% of national R&D shares or national patent output from the scatter
plots, but all sectors are used when constructing the linear fit.
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Figure A.11. Alignment Between Real Allocation and Optimal Allocation Across Countries
Using Alternative Parameter Values

Figure A.10. Sectoral R&D Aligns Well With γm for Some Countries But Poorly for Others in
2010
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Panel (c): Use (1+ρ/λ )−1 = 0.9
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16Notes. This table reproduces Figure 6 in the paper with alternative parameter values of ρ/λ.
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Figure A.12. Alignment Between Real Allocation and Optimal Allocation Across Countries
Different Years

Figure A.11. Sectoral R&D Aligns Well With γm for Some Countries But Poorly for Others in
2000 and 2005
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Notes. This figure reproduces Figure 6 in the paper using data from alternative years. The figure shows scatter plots
of sectoral R&D expenditure share in total national R&D expenditures against the optimal sectoral share of R&D
allocation for top ten innovative countries. The solid line is the linear fit; the dashed line is the 45-degree line.
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Figure A.13. Alignment Between Real Allocation and Optimal Allocation Across Countries
Using Sectoral Share of Patents as Real Allocation

Figure A.12. Sectoral R&D Aligns Well With γm for Some Countries But Poorly for Others in
2010

Using Sectoral Share of Patents as Real Allocation
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Figure A.13. Country-Level Welfare Loss
Using Sectoral Share of Patents as Real Allocation
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8

Notes. This figure reproduces Figure 6 in the paper. The figure shows scatter plots of sectoral patent output share
in total patent output in the country against the optimal sectoral share of R&D allocation for top ten innovative
countries in 2010. The solid line is the linear fit; the dashed line is the 45-degree line.

A57



Figure A.14. Country-Level Welfare Loss from Misallocation
Using Sectoral Share of Patents as Real Allocation

Figure A.12. Sectoral R&D Aligns Well With γm for Some Countries But Poorly for Others in
2010

Using Sectoral Share of Patents as Real Allocation
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Figure A.13. Country-Level Welfare Loss
Using Sectoral Share of Patents as Real Allocation
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Notes. This table shows the level of R&D misallocation and associated welfare cost during 2010—2014. The table
reproduces Figure 7 in the paper, but uses sectoral share of patents, rather than R&D expenditure shares, as the real
allocation.

Figure A.15. Alignment Between Real Allocation and Optimal Allocation Across Countries
Using OECD R&D Shares as Real Allocation
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Notes. This figure reproduces Figure 6 in the paper. The figure shows scatter plots of sectoral R&D share as reported
in the OECD ANBERD database against the optimal sectoral share of R&D allocation for top ten innovative countries
in 2010. The solid line is the linear fit; the dashed line is the 45-degree line.
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Figure A.16. R&D Misallocation and Welfare Cost Across Countries and Over Time

Figure A.14. Sectoral R&D Aligns Well With γm for Some Countries But Poorly for Others in
2010

Using OECD R&D Shares as Real Allocation
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Figure A.16. Welfare Loss Across Countries and Over Time
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Notes. This figure plots the level of misallocation and welfare cost across countries over time. The calculation
focuses on misallocation in top 50 IPC classes by total patents.
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Table A.20. Robustness of γ and Centrality Across Specification of Ω, ρ, and λ
Table A.21. Correlation of Unilaterally Optimal R&D Allocation and Welfare Loss Across

Different Specifications

Average Correlation With Baseline Case

Optimal Allocation γ Centrality a
Specifications Pearson’s r Spearman’s ρ Pearson’s r Spearman’s ρ

A. Alternative Specifications of Ω
A1 Forward-citation weighted Ω 0.9974 0.9994 0.8916 0.9864

A2 Backward-citation weighted Ω 0.9999 0.9999 0.9974 0.9968

A3 Scaled Ω 0.9955 0.9959 0.5228 0.9327

B. Alternative Values of ρ and λ
B1 Using (1+ρ/λ )−1 = 0.4 0.9976 0.9984 - -

B2 Using (1+ρ/λ )−1 = 0.5 0.9986 0.9990 - -

B3 Using (1+ρ/λ )−1 = 0.6 0.9993 0.9996 - -

B4 Using (1+ρ/λ )−1 = 0.7 0.9999 0.9998 - -

B5 Using (1+ρ/λ )−1 = 0.8 1.0000 1.0000 - -

B6 Using (1+ρ/λ )−1 = 0.9 0.9994 0.9997 - -

B7 Using (1+ρ/λ )−1 = 0.95 0.9988 0.9994 - -

C. Industry-Specific λ
C1 ROA (median = 0.1747, s.d. = 0.0268) 0.9982 0.9994 - -

C2 Gross Profit Margin (median = 0.2242, s.d. = 0.0460) 0.9985 0.9995 - -

D. Injecting Measurement Errors into Ω
D1 Adding log-N(0.02, 0.02) noise to Ω 0.9936 0.9934 0.8900 0.8166

D2 Adding log-N(0.04, 0.04) noise to Ω 0.9936 0.9934 0.8199 0.6607

D3 Adding N(0.02, 0.02) noise to Ω 0.9962 0.9944 0.9105 0.8192

D4 Adding N(0.04, 0.04) noise to Ω 0.9951 0.9931 0.8417 0.6696

D5 Adding max{N(0.02, 0.02), 0} noise to Ω 0.9963 0.9945 0.9118 0.8299

D6 Adding max{N(0.04, 0.04), 0} noise to Ω 0.9952 0.9932 0.8506 0.6941

D7 Adding U[0, 0.02] noise to Ω 0.9978 0.9967 0.9453 0.9287

D8 Adding U[0, 0.04] noise to Ω 0.9965 0.9953 0.9252 0.8861

D9 Adding Exp(0.02) noise to Ω 0.9964 0.9942 0.9068 0.8059

D10 Adding Exp(0.04) noise to Ω 0.9952 0.9928 0.8320 0.6597

10

Notes. This table reports the average Pearson and Spearman-rank correlation of γ and centrality of the innovation
networks between the benchmark specification and different sets of alternative innovation network constructions
forΩ (Panel A), alternative values of ρ and λ (Panels B and C), andΩ with injected errors (Panel D). In rows A1 and
A2, we weigh each cite in Ω construction (24) by the quality (total forward citations received) of either the citing
or the cited patent. In row A3, we construct ωij ∝ Citesi→j to scale directly with the total citations totally across
or ij-pairs (rather than normalized by the citations from i), and we choose the proportionality constant so that the
spectral radius of Ω is equal to one, ensuring endogenous growth as in our baseline model. Rows B1 to B4 consider
a range of alternative values for ρ and λ. Changing ρ/λ affects, across all countries, the magnitude of the welfare
impact of R&D reallocation, but the cross-country welfare impact still correlates highly with our baseline specifica-
tion. Panel C considers a specification with sector-specific innovation step size λi. Motivated by the decentralized
economy constructed in Section 2.7.2, where the step size corresponds to the profit share, we measure λi using each
sector’s median ROA (return on assets) calculated from our firm-level datasets, and calculate the corresponding γ
and welfare impact of R&D reallocation using the theoretical extension in Section B.8. Finally, in Panel D, we show
our quantitative analysis is robust to introducing additional, simulated random errors to Ω. For each of the listed
distribution, in each simulation, we add to each element inΩ random and independent terms drawn from the distri-
bution rescale Ω to ensure row sum to be one. For each distribution, we simulate the exercise for 10,000 times, and
the correlations are reported as average of the benchmark with each of the simulated Ω.
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Figure A.17. U.S. R&D Misallocation within 1-digit IPC Classes
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Notes. This figure shows U.S. R&D misallocation across 3-digit IPC classes within each 1-digit IPC class. Each of the
eight 1-digit IPC categories is represented by a separate panel, in which we show the log-ratio between actual R&D
and the constrained-optimal R&D allocation if a planner can reallocate resources across 3-digit IPC classes within
the 1-digit IPC category.
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