
The Economic Cost of Locking down like China:
Evidence from City-to-City Truck Flows∗

Jingjing Chen1, Wei Chen2, Ernest Liu3, Jie Luo4, and Zheng (Michael) Song5

1School of Economics and Management, Tsinghua University
2School of Economics, Zhejiang University

3Department of Economics, Princeton University
4School of International Trade and Economics, University of International Business and Economics

5Department of Economics, The Chinese University of Hong Kong

November 12, 2024

Abstract

Containing the COVID-19 pandemic by non-pharmacological interventions is costly.
Using high-frequency, city-to-city truck flow data, this paper estimates the economic cost
of lockdown in China, a stringent yet effective policy prior to the Omicron surge. By
comparing the truck flow change in the cities with and without lockdown, we find that
a one-month full-scale lockdown causally reduces the truck flows connected to the locked
down city in the month by 54%, implying a decline of the city’s real income with the
same proportion in a gravity model of city-to-city trade. We also structurally estimate
the cost of lockdown in the gravity model, where the effects of lockdown can spill over to
other cities through trade linkages. Imposing full-scale lockdown on the four largest cities
in China (Beijing, Shanghai, Guangzhou, and Shenzhen) for one month would reduce the
real national GDP by 8.7%, of which 8.5% is contributed by the spillover effects.
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1 Introduction

Many countries implemented non-pharmacological interventions such as stay-at-home mandate
(lockdown) in the ongoing COVID-19 pandemic. The stringency and effectiveness of the in-
terventions vary across countries. On the one hand, there is compelling empirical evidence
that lockdown has a limited effect on the spread of coronavirus or death in Europe and North
America.1 On the other hand, lockdown appears to be more effective in flattening the curve
of COVID-19 in the Asia-Pacific region, where the pandemic led to more aggressive policy
responses before the emergence of Omicron.2 China’s zero-COVID policy was particularly
effective. Hale et al. (2022a), for example, document that the first stay-at-home order was fol-
lowed by a more than 90% decline in the number of confirmed new cases in China. The pattern
was less dramatic in other Asia-Pacific countries and even reversed in the US, Canada and most
European countries. It is hardly surprising that a communicable disease can be contained by
sufficiently strict non-pharmacological interventions. The question is how much cost a country
would have to pay for locking down like China.

Lockdown causes short-term losses of goods and services as well as various more persistent
social costs. However, even the narrowly defined economic cost of a lockdown remains largely
obscured to both the scientific community and policymakers. The main challenge is two-fold.
First, it is hard to isolate the effect of policy intervention in a pandemic, in which other factors
like fear-driven individual choices also contribute to economic losses (see, e.g., Goolsbee and
Syverson, 2021). Moreover, since policy responds to the severity of the pandemic, endogeneity
is an impediment to causal inference. Second, the effect of policy intervention, even if confined
to a single locality, will spill over into all the other connected areas through economic linkages
(see, e.g., Baqaee and Farhi, 2020; Bonadio et al., 2020). Such policy spillovers are hard to
uncover by conventional locality-specific economic statistics.

Interestingly, China’s draconian lockdowns themselves provide an ideal opportunity to tackle
the identification issue. Since the epidemic broke out in Wuhan, the Chinese authority has
developed a policy package that aims at zero local transmission of COVID cases. Lockdown
plays a central role. A new COVID case immediately activates local lockdown, which may
escalate to full-scale citywide lockdown within several days. The fact that most lockdowns were
speedily implemented in response to even the smallest outbreak minimizes the endogeneity of
policy responses. Moreover, the swift and stringent lockdowns are effective. Local outbreaks had
all been very small until Omicron emerged. This bounds the effect of self-preventive measures
by fear of infection.3 But its success with less transmissible variants of COVID-19 already

1See, for example, Berry et al. (2021); Bendavid et al. (2021); Atkeson et al. (2020) and a dozen more
empirical studies reviewed by Allen (2022).

2See, e.g., Ahn (2021) and Tang and Li (2021), for evidence from the Asia-Pacific region.
3The three most severe local outbreaks before Omicron came are Shijiazhuang, Yangzhou and Xi’an. The
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makes the question highly valuable: How much cost do we have to pay to contain COVID by
lockdown?

To deal with the second challenge, we employ a unique data set on monthly city-to-city
truck flows. The data are from one of China’s leading logistics service providers, which tracks
real-time GPS information on 1.8 million (20% of China’s) long-haul trucks in 2020.4 The truck
flow data has two advantages over the conventional economic statistics. First, the data is high
frequency and can capture instantaneous truck flow changes, which can be one-to-one translated
into real income changes in a gravity model of city-to-city trade. Second, the data capture not
only city-specific economic activities but also city-to-city economic flows; the network nature of
our data is central to our analysis. These features enable us to map out the real income change
in response to lockdowns, from which we can further back out the spillover effect of a lockdown
through the trade linkage.

We collect and compile a new data set on city-level lockdowns in China. The sample
period starts from April 2020, when the Wuhan lockdown ended, to January 2022, before the
Omicron surge. The cities experiencing citywide or main urban district lockdowns are classified
as full-scale lockdowns, while the cities with some counties or districts locked down as partial
lockdowns. We find that full-scale and partial lockdowns were imposed on 16 and 18 cities,
with an average duration of 24 and 19 days, respectively. 32 out of the 34 cities were locked
down only once.

Our empirical analysis starts with an event study approach. We provide evidence for parallel
trends and against anticipatory effects. We then employ a two-way fixed effects regression that
compares the truck flow between the cities of which at least one is in lockdown and the truck
flow between the cities of which neither is in lockdown. A one-month full-scale lockdown reduces
the truck flow connecting to the city in the month by 59%. The effect of a partial lockdown is
20%.

While all the COVID outbreaks after 2020 Q1 in our sample period were small, self-
preventive measures driven by fear might still contribute significantly to the collapse of truck
flow in full-scale lockdowns. Goolsbee and Syverson (2021) find the effect of shelter-in-place
(S-I-P) order on consumer traffic to be small in the US. Moreover, the effect of fear appears
to be strongly correlated with the number of local COVID deaths. To control for individual
responses to the severity of local COVID outbreak, we add the number of COVID cases to
the regression. The estimated effect of full-scale lockdown reduces marginally to 54%. If both

three cities were locked down in an average of 7 days after the first new case was found, with an average of only
111 COVID cases recorded (11.6 per million). However, the daily new cases, most of which were asymptomatic
and detected in mandatory mass testing, are still an order of magnitude less than the peak in Hong Kong, where
no lockdown or mass testing was implemented.

4Time-series aggregate statistics of the data have been used for descriptive analysis on China’s economic
responses to COVID-19 by both academics (e.g., Chen et al., 2021a) and market analysts (e.g., CICC, 2020).
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consumer traffic and truck flow can measure local real income, our results would indicate that
the full-scale lockdown in China inflicts much larger damage to the local economy than the
S-I-P order in the US.

The reduced-form estimation, despite simple and highly transparent, is potentially flawed
because it does not consider the spillovers of lockdown and their feedback through the intercity
economic network. The high frequency city-to-city truck flow data allow us to structurally
estimate the Armington model, in which a lockdown affects the between- and within-city cost
of producing and selling goods, which in turn affect each city’s production. Our estimation
suggests that a full-scale lockdown increases the between- and within-city cost by 69% and
147%, respectively. Consistent with the results from the reduced-form approach, the effects of
a partial lockdown are much smaller.

The trade linkages transmit the effects of lockdown to the other cities. The advantage of the
structural approach is that we can estimate the aggregate effect of a lockdown and decompose it
into the local and spillover effects.5 For example, our model suggests that putting Shijiazhuang,
a city with a population of 11 million, into full-scale lockdown for one month would reduce the
real national income by 0.4%. Imposing one-month full-scale lockdown on a big city like Beijing
would knock 2.5% off China’s real income in the month. The effect of locking down a city on the
real national income is related to the city’s economic size and its position in the network. Using
Shapley Value regression, we find that city-level GDP and eigenvector centrality contribute
almost equally to both the aggregate effect and spillover effect of locking down a city. Finally,
we find enormous economic costs of implementing full-scale lockdown at the national level. If
the government puts all the 315 Chinese cities in our sample into full-scale lockdown for one
month, the real GDP of these cities in the lockdown month would decline by 52%.

There is a fast-growing literature on the economic impacts of COVID-19 through trade
linkages (see, for example, Maliszewska et al., 2020; Bonadio et al., 2020; Eppinger et al., 2020;
and Hsu et al., 2020; among many others). Due to limited data on international trade after the
outbreak of COVID-19, that literature, to the best of our knowledge, has to simulate economic
losses caused by COVID-19. A unique feature of this paper is the use of the the bilateral truck
flow data that measures actual trade flows between Chinese cities. We can estimate, rather
than simulate, the effects of lockdown shock in a trade model.

It should also be noted that our analysis has a few obvious caveats. First of all, our city-
to-city truck flow data do not disaggregate flows by industry. The monthly official statistics
by city and industry are nonexistent in China. Therefore, we cannot distinguish the heteroge-
neous effects of lockdown across industries (e.g., Dingel and Neiman, 2020), nor can we study

5The spillover effects are entirely driven by the general equilibrium effect. In the model, we can decompose
the percentage change of the real national income caused by locking down a city into the effect on the real
income of the city itself (local effect) and the effect on the real income of the other cities (spillover effect).
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the implications of the associated sectoral reallocation that have been extensively analyzed in
the recent literature (e.g., Krueger et al., 2020; Gottlieb et al., 2022). Second, the same data
limitation prevents us from analyzing the effect of lockdown transmitted through both input-
output and trade linkages, an important channel studied in the recent COVID literature on
international trade. The third caveat is that the contingency of lockdown might affect expec-
tations and lead to intertemporal adjustments (e.g., Guerrieri et al., 2020) that are entirely
absent in our study.

We contribute to the literature assessing the economic impact of COVID-19 and lockdown
policies. Since the literature has been expanding rapidly, it is hard to give a comprehensive
review. Many studies look into consumption expenditure change during the lockdown period in
the first half of 2020 relative to the same period in the previous year. Cross-country comparison
of the results provides some rough estimates of economic losses caused by lockdown outside
China. As noted in Andersen et al. (2020), if we use Sweden as a counterfactual of no lockdown,
where consumption expenditure fell by 25% between March 11 and April 5, most of the 27%
consumption expenditure decline in Denmark between March 11 and May 3 would be attributed
to the virus itself, rather than the mandate lockdown orders. This echoes the finding in Goolsbee
and Syverson (2021) that individual responses account for most of the decline in consumer traffic
in the US. The quarterly GDP data are also informative. Italy implemented relatively strict
lockdown policies among European countries. The difference in the GDP change in 2020 Q2
between Sweden and Italy implies lockdown in Italy reduces its quarterly GDP by 5.7%. Allen
(2022) also uses Sweden as a counterfactual to argue that the effect of Canadian lockdowns on
GDP in 2020 Q2 is 5.1%. To the extent that truck flows are proportional to GDP, our estimates
suggest that a one-month full-scale lockdown in all Chinese cities in our sample reduces GDP
by 17.3% in the quarter.6 The economic losses caused by Chinese lockdowns are three times as
large as those caused by Italian and Canadian lockdowns.7

Our paper is also related to the research on the economic impact of COVID in China.
Most papers focus on the first wave of the pandemic in the first quarter of 2020. While the
first wave and the associated aggregate economic impact are larger by an order of magnitude,

6A one-month full-scale lockdown reduces monthly GDP by 52%. Under the assumption of uniform monthly
GDP distribution within a quarter, this translates to a 17.3% decrease in quarterly GDP.

7The literature has also looked into employment and electricity consumption. See, for example, Montenovo
et al. (2020), Forsythe et al. (2020), Adams-Prassl et al. (2020) and Buechler et al. (2022). There are other
aspects of the economic consequences of COVID-19 and lockdown policies. Coibion et al. (2020) analysed how
the timing of local lockdowns causally affects households’ spending and macroeconomic expectations. Altig
et al. (2020) constructs several indicators to measure the economic uncertainty in reaction to the pandemic
and its economic fallout. Hensvik et al. (2021) explore real-time data on vacancy postings and job ad views
on Sweden’s largest online job board. Brodeur et al. (2021) use Google Trends data to show the effect of
the pandemic and lockdown on mental health. The heterogeneous impacts of lockdowns are investigated by,
e.g., Palomino et al. (2020), Bartik et al. (2020), and Chetty et al. (2020). Other studies on consumption and
employment include, e.g., Diewert and Fox (2020), Alexander and Karger (2020), and Birinci et al. (2021).
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the virus swept almost all cities and local policies responded to the severity of the epidemic,
making the identification much harder. Fang et al. (2020), Chen et al. (2021) and Ai et al.
(2022) employ the difference-in-differences (DiD) strategy to disentangle the effect of lockdown
on mobility, consumption expenditure and electricity consumption, respectively, by comparing
the lockdown and pre-lockdown periods in 2019 and 2020. He et al. (2020) and Pei et al.
(2021) quantify the impact of lockdown on city’s air pollution and year-on-year growth rate of
exports by comparing locked down and non-locked down cities in 2020 Q1. Our identification
is also based on the comparison between locked down and non-locked down cities. However,
we explore a sample period with no major COVID-19 outbreak even in the locked down cities.
This limits the endogenous individual and policy responses to severe outbreaks, which might
differ between locked down and non-locked down cities when the virus swept across the country.
The data set we compile on city-level lockdowns in China also complements the province-level
indices constructed by Hale et al. (2022b).

Methodologically, we extend the first-order sufficient statistics in Kleinman et al. (2023) to
obtain a closed-form formula that recovers productivity and trade cost shocks from over-time
changes in trade flows. The first-order approach greatly reduces the computational cost of
structural estimation. We also derive sufficient statistics that map from the shocks to welfare
changes. Allen et al. (2020) derive the existence and uniqueness of equilibrium in trade and
economic geography models as well as the first-order effect of trade cost shocks on equilibrium
prices. We focus on how quantity, instead of price, responds to bilateral shocks. Unlike the
standard Head and Ries (2001)’s method (see also Eaton et al., 2016; and Buera and Oberfield,
2020), which recovers the levels of trade costs from bilateral trade expenditures under the
assumption that trade costs are symmetric, our sufficient statistics instead invert the over-time
changes in the quantity of bilateral trade into changes in trade costs that fully rationalize the
data.

Finally, our work also relates to the literature that jointly models the economic decisions
and epidemics to quantify the economic costs and benefits of different policies (e.g., Eichenbaum
et al., 2021; Krueger et al., 2020; Auray and Eyquem, 2020; Atkeson, 2020; Alvarez et al., 2020;
Aum et al., 2021). The focus of our model is entirely on city-to-city trade that maps truck flows
to real income. On the empirical side, we provide an estimate of economic cost associated with
sufficiently strict lockdown that can swiftly contain the spread of COVID-19.

The paper is organized as follows. Section 2 summarizes several basic features of China’s
lockdown policy as well as the truck flow data. The reduced-form approach and its results
are provided in Section 3. We present the model in Section 4. Section 5 shows the structural
approach and its results. Section 6 reports the economic costs of lockdown in the structurally
estimated model. Section 7 concludes.
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2 Basic Facts

2.1 China’s COVID Policy

The first COVID-19 outbreak in Wuhan prompted the Chinese government to implement draco-
nian policies including locking down essentially all the cities in Hubei province, of which Wuhan
is the capital city. The strict measures were effective. By April 2020, new COVID cases almost
disappeared. After that, the Chinese authority developed and implemented a policy package
that aims at zero local transmission of COVID cases, which is often referred to as zero-COVID
policy. Notwithstanding sporadic local outbreaks, there was no nationwide outbreak before the
emergence of the Omicron variant. The solid line in Figure 1 plots the number of monthly new
confirmed cases in log units.8 The average number of new confirmed cases since April 2020 is
about two orders of magnitude smaller than that in the first quarter of 2020. As of the end of
2021, China’s total COVID cases per million people are 73, among the lowest worldwide.9

China’s zero-COVID policy is mainly based on non-pharmacological interventions. Some
immediate policy responses, such as testing, contact tracing and quarantine, are commonly
adopted elsewhere, though the reaction of the Chinese government is often perceived faster
and better implemented than many other countries (Lazarus et al., 2020). Some preemptive
measures are also tighter and more persistent. For example, strict border controls, together
with at least two-week hotel quarantine for cross-border travelers, has been in place since the
pandemic spread to other countries. Yet, the defining feature of China’s zero-COVID policy is
its determination to extinguish nascent outbreaks by draconian lockdown measures to even the
slightest local outbreak. We summarize the guidelines for lockdown policy issued by the State
Council according to an official explanatory document.10

Lockdown starts at community. The Chinese government classifies the communities record-
ing positive but less than or equal to ten COVID cases in the past 14 days as “median-risk” zone.
Those recording more than ten COVID cases are classified as “high-risk” zone. The median-
and high-risk zones are “sealed” (“fengkong” in Chinese). All residents in the zones have to
stay at home and be tested multiple times, and all vehicles, unless delivering necessities, are
prohibited from entering the zones. According to the standards in Hale et al. (2020), median-

8We use the information released by local Health Commissions, collected by DingXiangYuan (https://ncov.
dxy.cn/). Note that only locally transmitted cases with symptom are counted as new confirmed cases. At the
national level, the asymptomatic cases that are tested positive but have never developed symptom account for
68% of total asymptomatic cases in our sample period, fewer than a fifth of the total confirmed cases. Many
local governments do not report the asymptomatic cases.

9COVID cases can be underestimated for various reasons. Because our empirical analysis will exploit cross-
route and over-time variation with route and time fixed effects, the results will not be affected by under-reporting
of COVID cases at the aggregate level.

10We cannot find the original document issued by the State Council. The explanatory document we use is
from Chengdu Health Commission and publicly available at https://www.sc.gov.cn/10462/10464/13722/
2021/11/10/d0c69ea270c643578fa1fbc77e4a2272.shtml.
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Figure 1: New COVID Cases and Total Truck Flow Change
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Note: The solid line is the log of new COVID cases in the month (left axis). The dashed line (right axis) is the
aggregate detrended truck flow change, d ln q̄t, which is defined in the text. The grey shaded areas represent
the first quarter.

and high-risk zones can be coded with the highest scale in all the categories for closures and
containment. The restrictions, supposedly enforced by 24-hour patrols, are much stricter than
those in Europe and North America. For instance, “staying at home” in China literally means
no single step out of your door during the entire lockdown period, while the British version of
“stay-at-home” order allows shopping for basic necessities and one form of out-door exercise a
day.

The county or district to which the locked down community belongs is also affected, even
if no cases are recorded elsewhere in the area. Lockdown-like restrictions are imposed on the
“controlled” (“guankong”) zones – i.e., the communities which the COVID infected individuals
travelled to within two days before they were confirmed and are likely to cause local transmis-
sion. In particular, the residents in the controlled zones cannot leave home except to purchase
necessities every two or three days. The communities other than the “sealed” and “controlled”
zones in the county or district are all “guarded” (“fangfan”). The residents cannot leave the
guarded zone unless for necessary trips such as seeking medical treatment, which requires a cer-
tificate of negative test result within 48 hours. Other measures for the guarded zones include
encouraging working from home, restricting group gathering, closing indoor public places, and
limiting restaurant dining.

We refer to lockdowns imposed on communities in a city as minimum lockdowns. The
measures will escalate into locking down counties or districts in the city, referred to as partial
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lockdowns, if there is evidence of community transmission. In the worst scenario, referred to
as full-scale lockdown, the entire city or main urban district is locked down. The conditions
for escalation are mainly determined by the severity of COVID outbreak. Dr. Fu Gao, the
head of China’s CDC, provides an example of Shijiazhuang in an article for which he is the
corresponding author (Chen et al., 2021b).11 There are exceptions. For instance, Langfang was
locked down alongside Shijiazhuang in January 2021. However, the decision for Langfang is
perhaps based more on its proximity to Beijing (64 km) than on the severity of the outbreak
(only one case recorded).

COVID policies adapt to the evolving transmissibility and lethality of the virus. The out-
break of Omicron forced governments in many countries to adjust their policy interventions.
Several Chinese officials have soften the language when describing lockdowns in their campaign
slogans, from “zero COVID” to “dynamic clearance”. Yet, there had not been any measurable
relaxation in China’s lockdown policies during the time frame of this study. The average strin-
gency index in Hale et al. (2022b) in the second half of 2021 is actually slightly higher than that
in the first half. Therefore, we simply assume the stringency of lockdown to be time-invariant.

2.2 Measuring Lockdowns

To accurately measure the timing and duration of lockdowns, we collect and compile a novel
data set of Chinese lockdowns. Fang et al. (2020) and He et al. (2020) identify lockdown for each
Chinese city in 2020 Q1. However, no systematic measures of city-level lockdowns are available
after the first quarter of 2020, and in particular the data are not published by China’s official
statistics.12 To fill the blank, we compile a monthly city-level lockdown index to distinguish
the scale of lockdown. This subsection describes the collection methodology and presents some
summary statistics.

We start with full-scale lockdowns, where the entire city or main urban district is locked
down. A well-known example is that Wuhan, where the COVID epidemic first broke out,
locked down the entire city with 11 million people for more than two months. The lockdown
measures that can be found in government announcements include suspension of all traffic,
closed-off management for all residential buildings and no leaving allowed from the city (see,
e.g., Fang et al., 2020; and Pei et al., 2021). We use web scraping to compile a new data set
on full-scale lockdowns between April 2020 and January 2022. The first step is to manually

11Shijiazhuang, the capital city of Hebei province, recorded the first case on January 2, 2021. The first round
of mass testing for the city, which was conducted from 6 to 9 January, detected 354 cases. The whole city was
locked down on January 7 according to news reports.

12China’s CDC frequently updates the list of median- and high-risk zones at the community level, according
to the number of new locally transmitted COVID cases. However, there are few economic data available at the
same granular level. Hale et al. (2022b) create a composite index for China’s COVID policy responses at the
provincial level.
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collect local government announcements for the three most well-known lockdowns after 2020
Q1: Shijiazhuang, Yangzhou and Xi’an. While the announcements are all about lockdown,
local governments seldom used the word of fengcheng, meaning “locking down the city” in
Chinese. Instead, our reading detects three keywords that frequently appear in the official
announcements: (1) closed-off management in all areas; (2) traffic controls on all roads; (3)
public transport out of service. We then scrape the first 50 results by searching year, month,
city name and the three keywords on Baidu, where the year, month and city refer to the month
in the year when the city recorded new COVID cases. The scraped web pages are manually
processed through two more steps. The first is to drop the irrelevant web pages, including
those with inconsistent timing and location and those on traffic controls caused by non-COVID
considerations (e.g., extreme weather conditions). The second is to select official announcements
on lockdown in the remaining web pages. This procedure identifies 16 cities on which full-scale
lockdown was imposed once after 2020 Q1. No cities experienced the most draconian lockdown
more than once. The average duration of full-scale lockdowns is 24 days.

A less draconian response is to lock down a county or district in a city (e.g., partial lock-
down). We replace city name in the above procedure with county/district name and repeat
the procedure for all the counties and districts in the city. We find 22 partial lockdowns in
18 cities. Two cities experienced partial lockdown more than once. The average duration of
partial lockdowns is 19 days.

The starting date of each full-scale or partial lockdown can be extracted from government
announcements. The lockdowns are on average imposed 3 days after recording the first new
case. The end of lockdown is not always openly announced. We can find the ending date for
32 out of all the 38 full-scale or partial lockdowns. For the 32 lockdowns with ending dates,
the lockdowns are on average lifted 7 days before the “clearance” day – i.e., the first day when
no new case is recorded over the past 14 consecutive days. For the remaining 6 lockdowns, we
assume they all end 7 days before the “clearance” day.

Locking down communities (i.e., minimum lockdown) is the mildest response. According to
the mandate of the State Council, minimum lockdown should be immediately implemented in
the cities recording new cases. The periods in which a city records positive new COVID cases
but has no partial or full-scale lockdown are regarded as minimum lockdown periods.13

Table 1 summarizes our findings. The appendix provides the full list of the 34 cities on which
full-scale or partial lockdown were imposed. Not surprisingly, the scale of lockdown relates to
the severity of the COVID outbreak. The average number of new cases per million people is
74.9, 24 and 6.2 in the cities with full-scale, partial and minimum lockdown, respectively.

13Since it is hard to measure the actual duration of a minimum lockdown, which might vary across regions
and over time, we assume that the Chinese government uniformly locks down all the communities with new
COVID cases in the past two weeks.
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Table 1: Lockdowns after Q1 2020

Panel A: Citywide lockdowns after Q1 2020
Number of city Average city COVID cases d ln q̄ht

16 329 (74.9) -0.48

Panel B: Partial lockdowns after Q1 2020
Number of city Average city COVID cases d ln q̄lt

18 108 (24.0) -0.21

Panel C: Other community lockdowns after Q1 2020
Number of city Average city COVID cases d ln q̄mt

111 38 (6.2) -0.03

Note: Average COVID cases are the new COVID cases in the lockdown period. The number in parentheses is
the ratio of new COVID cases to the city population (per million). d ln q̄kt is the weighted average of the truck
flow changes for the city pairs with Dk

ni,t = 1 relative to that for those with Dk
ni,t = 0 ∀k. k ∈ {h, l,m} stands

for full-scale lockdown (k = h), partial lockdown (k = l) and minimum lockdown (k = m), respectively. See the
text for more detailed definition.

2.3 Truck Flows

The city-to-city truck flow data comes from real-time truck GPS records of 1.8 million trucks
operating in 336 out of 342 prefecture-level cities.14 Specifically, the truck flow data measures
the number of round-trip trucks that depart from a city identified as the place of loading
and arrive at another city identified as the place of discharge. The city-to-city truck flow is
symmetric by construction. Because trucking is the primary mode of domestic freight transport
in China, truck flows are highly correlated with economic activities.15 Figure A8 in the appendix
shows that cross-sectionally city-level truck outflows correlate strongly to city-level GDP in 2019
(correlation 0.9) and also to night light intensity (correlation 0.86). The truck flow data does
not contain information about freight.

This paper employs the truck flow data covering 315 cities from January 2019 to January
2022.16 The logistics service provider does not monitor within-city truck flows. Truck flows are
regularly updated on 60% of all the 315 × 314/2 = 49, 455 between-city pairs. The city pairs
with truck flow data are closer to each other and richer than those without.17 To control for the
effects of the growth trend of the economy and the expansion of the logistics service provider,

14See Alder et al. (2023) for a detailed description of the real-time GPS data.
15The Highway accounts for 73% of the total freight in China in 2019 by official statistics.
16We exclude cities in Tibet and Xinjiang, as these two regions have much fewer trade linkages to the rest of

China.
17The difference is 35% less and 55% more in the between-city distance and total GDP, respectively.
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we filter out the route-specific trend component in the time series of log truck flow.18 Denote
by ln qni,t the detrended log truck flow from city i to n at period t. To control for the seasonal
effects, we take difference of the detrended log truck flow between the current period and the
same period in 2019. The difference is referred to as the log change in truck flows and denoted
by d ln qni,t. The aggregate truck flow change is measured by d ln q̄t ≡

∑
ni ωni d ln qni,t, where

ωni is the weight measured by the city-pair’s total truck flows in 2019.
Figure 1 shows that, in the time series, the aggregate truck flow change correlates nega-

tively to new COVID cases (correlation -0.69). The negative correlation remains significant
(correlation -0.42 with p-value 0.09) after removing data from the first quarter, a time window
that contains the Chinese New Year (January 25 in 2020, February 12 in 2021 and February 1
in 2022), a major festival during which economic activities, COVID policies, and the outbreaks
themselves may operate differently from the rest of the year.

To link city-level lockdown measures to the city-to-city truck flows, we construct city-pair
lockdown dummies, Dk

ni,t, where k ∈ {h, l,m} stands for full-scale (k = h), partial (k = l) and
minimum lockdown (k = m), respectively. For n ̸= i, Dh

ni,t is a city-pair dummy that equals
one if at least one of the cities has a full-scale lockdown in the period. Similarly, Dl

ni,t equals
one if at least one city has partial lockdown and no full-scale lockdown is imposed on any of
the cities in the period. Likewise, Dm

ni,t is the dummy variable for minimium lockdown, which
equals one if any city in the pair records new COVID cases and none of the cities have full-scale
or partial lockdown. For n = i, Dh

ii,t, Dl
ii,t or Dm

ii,t becomes a city dummy, which equals one if
the city experiences full-scale, partial and minimum lockdown, respectively.

The decline of truck flows in the lockdowns is evident. Denote by d ln q̄kt the weighted
average truck flow change for the city pairs with Dk

ni,t = 1 relative to that for Dk
ni,t = 0 ∀k.

Table 1 shows that d ln q̄kt for k = h (full-scale lockdown) declined by 0.48 log points. The
decline is 0.21 and 0.03 for k = l and k = m (partial and minimum lockdown), respectively.

In what follows, we will treat minimum lockdowns as no lockdown. This is based on the
observations that the number of COVID cases and the disruption of truck flows are both small
in minimum lockdowns. Section 3.1 will check the robustness of our results by estimating
separately the effect of minimum lockdowns.

2.4 Normal and Lockdown Periods

Let Dni,t = Dh
ni,t + Dl

ni,t > 0 be the lockdown dummy that equals one if at least one city has
full-scale or partial lockdown at period t. We define a period [N0, N1] as “normal” if there are no
lockdowns in the broader time window from 2 months before to 2 months after the period – i.e.,
Dni,t = 0 ∀t ∈ [N0−2, N1+2]. We define [T0, T1] as a “lockdown” period if there are lockdowns

18We use linear detrending. Using HP filter gives essentially the same results.
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during [T0, T1], but no lockdowns in the 4 months prior to T0 and 4 months after T1. We work
with the sample that consists of all the lockdown periods, extended by 2 months forward and
backward, and all the normal periods. This drops about 1.5% city-pair-month observations. As
will be shown in the event study below, the restriction guarantees that there are no overlaps
of lead-lag effects in the sample. Our sample has 2068 city-pair-month lockdowns. We do not
distinguish the city pairs with one or both cities locked down since only 28 observations have
both cities locked down.

3 Reduced-Form Approach

We first estimate the effect of lockdown on the directly observable city-to-city truck flows. We
adopt a two-way fixed effect regression to estimate the effect of lockdown on d ln qni,t, for n ̸= i.

d ln qni,t =
∑

k∈{h,l}

αkDk
ni,t + δni + νt + ηnit+ ϵni,t, (1)

where we control city-pair fixed effect, δni, time fixed effect, νt, and city-pair-specific time trend,
ηnit. ϵni,t is an error term, which has zero mean and can be serially correlated. Since qni,t = qin,t,
the regression does not distinguish between exporter and importer. Each observation is a city
pair and always weighted by ωni (the city pair’s total truck flows in 2019) to reduce the influence
of outliers and measurement errors.

Equation (1) estimates the effect of type-k lockdown, αk, by comparing the cities with type-
k lockdown and those without lockdown in the same month. Identifying αk requires two key
assumptions. First, the average truck flows with and without lockdown would have followed
parallel trends in the absence of lockdown. Second, lockdown has no causal effect prior to its
implementation (no anticipatory effect). Both assumptions would be satisfied if lockdown is
solely activated by random local COVID outbreaks.19 Moreover, the parallel trends would still
hold if the selection bias remains the same between the periods with and without lockdown.
This can be checked by comparing trends of truck flows in the pre-lockdown period, which will
be examined in Section 3.1.

Different from the canonical DiD specification, (1) has staggered treatments (lockdowns).
In addition, they are not an absorbing state. The implications of staggered and non-absorbing
treatments have been studied in the recent literature (see de Chaisemartin and D’Haultfœuille,
2020). We also need homogeneous treatment effects (i.e., constant βk across routes and over
time) for the OLS estimator to be unbiased. The recent literature addresses some limitations
of the OLS estimator with staggered treatment and heterogeneous effects. We adopt a new

19The decision of lockdown may be affected by other factors. However, we do not find any correlation between
the lockdown and the city’s economic or population size (see Figure A9 in the appendix).
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method and find the results to be very robust. The details are provided in Section A.2.
We can allow n = i in (1) by inferring d ln qii,t from (11), which assumes within-city truck

flow to be a weighted average of between-city truck flow changes. However, by construction, the
unweighted OLS estimate of the coefficient of Dk

ii,t will be identical to that of Dk
ni,t for n ̸= i.

While the reduced-form regression cannot distinguish the within- and between-city effects, they
can be separately estimated in the structural approach.

Because lockdowns took place at the city-month level, another key assumption underlying
our approach is that lockdowns are uncorrelated with other city-month level shocks that may
affect city-to-city trade. We believe this is a good assumption in our context because (1) we
use high-frequency (monthly) data; (2) lockdowns were speedily implemented in response to
even the smallest outbreaks, which occurred plausibly exogenously; (3) actual outbreaks in our
sample period were very small and unlikely to affect economic decisions except through the
lockdowns. For these reasons, our baseline reduced-form specification deviates from that of a
typical gravity regression in that we omit importer- and exporter-time fixed effects and include
only the city-pair fixed effects and time fixed effects. Nevertheless, we will conduct several
robustness checks in Section 3.2 on the validity of this assumption and the sensitivity of our
results relaxing the assumption.

3.1 Results

Before estimating the model, we first check our identification assumptions by generalizing (1)
to an event-study approach.

d ln qni,t =
∑

k∈{h,l}

(
J̄∑

j=1

αk
−jPREk,j

ni,t + αk
0D

k
ni,t +

J̄∑
j=1

αk
jPOST k,j

ni,t

)
+ δni + νt + ηnit+ ϵni,t. (2)

Here, PREk,j
ni,t is a dummy that equals 1 if t is j months before the beginning of the next type-k

lockdown. Analogously, POST k,j
ni,t is a dummy that equals 1 if t is j months after the end of

the previous type-k lockdown.
The estimated αk

0 will capture the difference between truck flows in type-k lockdowns and
those in normal periods. The estimated αk

−j or αk
j will capture the difference between truck

flows in j months prior to or after type-k lockdowns and those in normal periods, respectively.
We use the leads to verify the presence of pre-trends. The lags, if statistically significant, would
suggest some persistent effects after the lockdown ends. J is set to 2 so that there are no lead-lag
effects of other lockdowns in the 2 months prior to or after the lockdown in our sample.20

20Recall that we only keep the lockdowns that are at least four months away from the other lockdowns in the
sample.
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The results are reported in Figure 2. There is no evidence for pre-trends since the estimated
αk
−j are statistically insignificant. The estimates of αk

0 are significant and quantitatively sizable.
Imposing full-scale lockdown on city i will reduce the truck flows connected to the city by 0.41
log points. The effect of a partial lockdown is 0.10 log points. The estimates of αk

1 and αk
2

become insignificant and much smaller than that of αk
0. These estimates suggest that the

lockdown has no persistent effect on truck flows. We cluster standard errors at the city-pair
level. Similar results can be found in Figure A10 if we cluster standard errors at both city n

and i (Cameron et al., 2011).

Figure 2: Event Study
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Note: The figure plots the estimated αh
j (left panel) and αl

j (right panel) in (2), together with their 95%
confidence intervals. Each observation is weighted by ωni, the city-pair’s total truck flows in 2019.

We then run the regression (1). The results are reported in the first column of Table 2. Not
surprisingly, the estimate of αk is very close to αk

0 in the event study.
We have been treating cities with minimum lockdown as part of the control group. We

can check the validity of our assumption by adding the COVID dummy to the regression. The
COVID dummy for a city pair will be equal to one if any city in the pair records new COVID
cases and none of the cities have full-scale or partial lockdown. Since minimum lockdown
is automatically activated by a new COVID case, the COVID dummy is also a dummy for
minimum lockdown in the city pair (Dm

ni,t). The results are reported in the second column of
Table 2. The effect of minimum lockdown is statistically significant but quantitatively small. It
only reduces truck flows by 0.03 log points. Moreover, the estimated αh and αl remain robust
after controlling for minimum lockdown. These results are reassuring. Ignoring minimum
lockdown will not significantly bias the estimates on the effects of full-scale and partial lockdown.
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Table 2: Effect of Lockdown on Truck Flow, Panel Regression

(1) (2) (3) (4) (5)

Dk
ni D̂k

ni

Full-scale lockdown -0.4093 -0.4171 -0.3508 -0.8931 -0.7695
(0.0415) (0.0418) (0.0377) (0.0656) (0.0668)

Partial lockdown -0.0911 -0.0963 -0.0403 -0.2182 -0.1063
(0.0257) (0.0256) (0.0268) (0.0622) (0.0659)

COVID dummy -0.0271
(0.0064)

ln(1 + Case) -0.0228 -0.0204
(0.0028) (0.0025)

Time FE YES YES YES YES YES
City pair FE YES YES YES YES YES
City pair trend YES YES YES YES YES
Observations 206325 206325 206325 206325 206325
R-squared 0.3360 0.3369 0.3391 0.3379 0.3403

Note: The first two rows report the effect of lockdown on truck flows. Standard errors are clustered at city pair
and reported in parentheses. Each observation is weighted by ωni, the city-pair’s total truck flows in 2019. In
Columns (1) to (3), we use Dk

ni to measure lockdown, which is a dummy that equals one if city pair (n, i) has
type-k lockdown. In Columns (4) and (5), we use D̂k

ni,t, which represents the proportion of days with type-k
lockdown in the month with Dk

ni,t = 1. COVID Dummy equals one if the city pair has new COVID cases and
none of the cities have full-scale or partial lockdown. “Case” refers to the number of new COVID cases in the
city pair.

Equation (1) assumes that lockdown is the only channel through which the pandemic can
affect truck flows. Equation (1) can be extended by allowing truck flows to be affected by
individual choices. Specifically, we assume that a more severe COVID outbreak will intensify
self-protective measures that suppress economic activities and truck flows.

d ln qni,t =
∑
k

αkDk
ni,t + F (sni,t) + δni + νt + ηnit+ ϵni,t, (3)

where F is an increasing function and sni,t measures the severity of the pandemic in the city
pair (n, i). We assume F (sni,t) = b ln(1+Caseni,t), where “Case” is the number of new COVID
cases in the city pair.21 The third column of Table 2 shows that, conditional on lockdown

21The results are robust to adding high-order polynomials to F (sni,t). Only the linear term would be signifi-
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status, a more severe COVID outbreak is indeed associated with a larger decline in truck flows.
Moreover, the estimated αh and αl drop by 14% and 56%, respectively, after controlling for

F (sni,t). Our finding confirms that lockdown should not be the only reason for the disruption
to economic activities in lockdown. To the extent that the number of COVID cases correlates
to fear of infection and self-protective measures, individual choices may account for a significant
part of the decline in truck flows. That being said, the estimated αh remains quantitatively
large. A full-scale lockdown reduces truck flows by 0.35 log points on average. In contrast,
the effect of COVID severity has the maximum of 0.17 log points for Xi’an, which recorded
2052 cases between December 2021 and January 2022. The estimates of partial lockdown
become statistically insignificant after controlling for the number of COVID cases. The effects
of policy interventions and individual responses to the pandemic may be harder to separate in
less stringent lockdown.

We have so far used monthly lockdown dummies to match the monthly truck flow data.
The monthly dummies, albeit simple, do not reflect the length of lockdown in a month. The
full-scale lockdown in Langfang lasts for only 5 days, while Yangzhou was under full-scale
lockdown in the entire month of August 2021. The average number of days of full-scale and
partial lockdown in the lockdown month (not the whole lockdown period) with Dh

ni,t = 1 and
Dl

ni,t = 1 are 14 and 12, respectively. To provide a more accurate measure of lockdown, we
construct a continuous variable, D̂k

ni,t ∈ (0, 1], which represents the proportion of days with
type-k lockdown in the month with Dk

ni,t = 1. The last two columns of Table 2 show that the
estimated coefficient of D̂k

ni,t more than doubles that of Dk
ni,t. Controlling for COVID cases

reduces the effect of full-scale lockdown by 14%. Imposing full-scale lockdown on a city for a
whole month would reduce truck flows connected to the city by 0.77 log points. A whole month
partial lockdown would reduce the truck flows by 0.11 log points.

3.2 Robustness

City-Specific Time-Varying Shocks We assume lockdown to be uncorrelated with other
city-specific time-varying shocks affecting bilateral trade flow. We try two different approaches
to examine the validity of and the robustness of the results to the assumption. First, we estimate
exporter- and importer-month fixed effects and then use event study to show how lockdown
affects the estimated fixed effects. Second, we interact exporter and importer dummies with
year or semi-year dummies to control for the city-specific characteristics that vary at lower
frequency. We show the empirical specifications and results in Appendix A.3. The estimated
effect of full-scale and partial lockdown on the exporter- and importer-month fixed effects is
-0.37 and -0.10 log points, close to the estimated effect of -0.41 and -0.10 on truck flows in the

cant.
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benchmark case. The estimates are also very robust to the exporter and importer dummies
interacted with year or semi-year dummies.

City-Level Regression While our main treatment is city-month lockdowns, the unit of
observation in our baseline regressions is city-pair-month, capturing the effect of city-month
shocks on monthly city-to-city trade flows. A simpler approach is to perform the regression
at the city-month level. In Appendix A.4, we show that this specification, which is easier
to interpret, introduces some bias to our estimates. This is because truck flows occur at the
bilateral level, and strictly speaking there are no cities that are “untreated”: locking down one
city should affect city-level truck flows of all the other cities, as long as these cities trade with
the locked down city. Empirically, we find the bias to be small.

Violation of SUTVA City-pair regression can reduce the above bias in city-level regression.
However, lockdown of treatment pairs may still have an impact on the truck flows of control
pairs through spillover or general equilibrium effects, which violate the Stable Unit Treatment
Value Assumption (SUTVA). This is exactly the reason why we will use the structural approach.
In addition, we conduct three additional robustness checks to address this important concern.

We first excluded the control pairs which are more likely affected by lockdown of the treat-
ment pairs. One option is to use a “cleaner” control group in which the cities do not neighbor
any locked down cities in the treatment group (see, e.g., He et al., 2020). Another option is
to exclude the cities to which the lockdown cities are their important trading partners. We
classify city n as an important trade partner of city i by the bilateral truck flows exceeding 1%
of city i’s total truck flows in 2019. We can also control for lockdowns along the routes in the
control group. The details are provided in Appendix A.5. Our results are all robust to these
alternative control groups.

The second approach is to adopt the simple first-difference estimation in Hanna et al. (2017).
We select the routes that experienced lockdown at least once and estimate the effect of lockdown
for each of the routes. This route-specific regression keeps the treatment and control groups in
different periods. Therefore, lockdown does not affect the control group. Appendix A.5 shows
the empirical specification and the distribution of the estimates across the routes. The average
effect, weighted by the corresponding route’s total truck flows in 2019, is -0.38 and -0.15 log
points for full-scale and partial lockdown, respectively. They are, again, close to our main
estimates.

Lastly, the reduced-form approach does not consider substitution of trade between the city
that is under lockdown and the other cities that are not, which, again, violates SUTVA. While
this issue will be taken care of by the structural approach, we can still employ the same reduced-
form approach to check the magnitude of the bias. Specifically, we construct a city-level variable
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that measures the change in total truck flows to the city’s neighbors but excludes the change in
truck flows from the city. If a city’s trading partners can easily switch to another city, locking
down the city should lead to an increase in truck flows to its neighbors. However, the effect
appears to be small and insignificant. The details are provided in Appendix A.5.

City-to-City Population Flows Fang et al. (2020) estimate the effects of the first-wave
lockdowns on population flows. Using the same data source from Baidu, we construct a sample
of weekly city-to-city population flows that covers the Chinese new year period in 2021 and
2022 (up to January 31, 2022). The sample covers 8 out of 16 full-scale lockdowns and 10 out of
22 partial lockdowns in Table 1. We then apply the same event study approach to the change
in weekly city-pair population flows.

Appendix A.6 reports the findings. They are qualitatively similar, though the estimated
effects on population flows are larger. We are cautious about mapping changes in population
flows into welfare effects. The main reason is that while goods trade must necessarily involve
the physical mobility of goods from one location to another, cross-location worker flows can
substitute from physical commutes into remote work, as documented by the recent literature
focusing on remote work in the US (e.g., Barrero et al., 2021).22

4 Model

The reduced-form approach estimates the local effect of lockdown. To explore the spillover
effect, we employ the standard Armington (1969) model of trade. We derive linear sufficient
statistics that map changes in bilateral trade flows to changes in trade costs and real income.
As is well-known in the trade literature (e.g., Arkolakis et al., 2012), the Armington model is
isomorphic to the model in Eaton and Kortum (2002). Our results extend those in Kleinman
et al. (2023), which derive linear sufficient statistics of productivity changes on real income.
The first-order approach greatly reduces the computational cost of structurally estimating the
cost of lockdown. We will perform policy counterfactuals based on our sufficient statistics and
the recovered trade costs.23

Each city n ∈ {1, ..., N} in China is modeled as an open and perfectly competitive economy
endowed with a representative consumer who supplies ℓn units of labor inelastically to produce
a city-specific goods with productivity an, or the production function Qn = anln. Given wage

22By selection, workers are ex-ante less likely to commute across cities for jobs that require workers to be in
close proximity; these jobs are thus less likely to be disrupted by the lockdowns. Hence, it is questionable how
to infer about the welfare impact of lockdowns from the reduction in population flows.

23Although we choose the Armington formulation for simplicity, our results hold for any international trade
model with a CES import demand system.
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rate wn, unit cost of producing goods in city n is

cn = wn/an. (4)

Each consumer has a taste for variety, with utility function

un =

(
N∑
i=1

Q
θ

θ+1

ni

) θ+1
θ

, (5)

where Qni is the trade flows of goods i consumed in city n in quantity, and θ+1 is the elasticity
of substitution across goods. The terms “welfare”, “real income”, and “utility” are often used
interchangeably in the literature. To avoid confusion, we will refer to un as “real income”.

Cities trade with one another subject to iceberg-type proportional trade cost τni for sending
goods produced in i (“goods i” in short) to city n. The model predicts a gravity relationship
for city-to-city bilateral trade flows:

Qniwiτni/ai︸ ︷︷ ︸
city n’s expenditure

on goods i

= (wnℓn + d̄n)︸ ︷︷ ︸
city n’s

total expenditure

Sni, Sni ≡
(wiτni/ai)

−θ∑N
k=1 (wkτnk/ak)

−θ
, (6)

where wi is the cost of labor (wage rate) in city i; wiτni/ai is the price of goods from i to n (pni);
Sni is the expenditure share of consumer n on goods i. An equilibrium is the set of quantities
and wage rate {Qni, wi}Ni,n=1 that satisfies the expenditure share relationship in (6),24 which
states that the total income of city i is equal to the sum of expenditure on goods i by all other
cities:

wiℓi =
N∑

n=1

(wnℓn + d̄n)Sni, (7)

where we choose the normalization that
∑

i wiℓi = 1, and d̄n is trade deficit, which is exoge-
nously given in our model.25

Our model abstracts away from nontradable sectors, since our data do not distinguish truck
flows by industry.26 Our model also abstracts away from labor mobility, because inter-city
migration is limited in the short run.

We use the system of equations (5), (6), and (7) to derive sufficient statistics that connect
trade cost and productivity changes, trade flow changes as well as welfare changes, extending

24Market clearing holds by Walras law, (6) and (7).
25We assume the trade with the rest of the world does not change with the domestic shocks.
26The main findings are robust in a more general model with nontradable sectors under the assumption that

city-level shocks apply equally to tradable and nontradable sectors.

19



the results in Kleinman et al. (2023).
Because a productivity change in city i is isomorphic to a uniform change in the shipping cost

from i to all of its trading partners (including city i itself), we define d ln zni ≡ d ln τni− d ln ai

as the composite change in trade cost and productivity in the route at which labor in city i

produces goods consumed by city n.
We stack bilateral trade flow quantities Qni, expenditure shares Sni, and composite cost zni

into N ×N matrices Q, S, and Z, respectively. For notational ease, we further let QN2×1 and
ZN2×1 be the vector form of Q and Z, respectively.

Proposition 1 Starting from an equilibrium with expenditure share S,

(1). There is a one-to-one linear mapping from the composite cost shocks vector to the changes
in bilateral trade flow quantities vector:

d lnQ = G d lnZ (8)

where G is an N2×N2 matrix that depends only on the trade elasticity θ, the expenditure
share matrix S.

(2). The real income change in city n:

d lnun =
N∑
i=1

Sni d lnQni.

We leave the proof to the appendix. Intuitively, when the composite cost from i to n

increases due to lockdowns ( d ln zni), city n lowers its demand for goods i and raises demand
for other goods. This partial equilibrium substitution effect lowers the income in city i and
its production cost, thereby causing further rounds of substitution, through which the effect
of d ln zni affects prices, consumption, and real income in other cities k ̸∈ {n, i}. The full,
general equilibrium effect of composite cost shocks sums across all rounds of propagation and
is disciplined by our trade model. The matrix G in Proposition 1 forms the linear sufficient
statistics for these general equilibrium effects of COVID shocks. In subsequent sections, we use
Proposition 1 to estimate the economic impact of lockdown policy and perform counterfactual
analysis.

Under the assumptions that the composition of goods in trucks and the proportion of road
transport in the total city-to-city freight do not change over time, the truck flow change is
identical to the trade quantity change – i.e., d lnQni,t = d ln qni,t. Then, the second part of
Proposition 1 implies that the weighted average truck flow change on the routes to a city can
be interpreted as the city’s real income change. Moreover, as will be shown below, our linear
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sufficient statistics allow a closed-form solution to the structurally estimated lockdown shocks,
which greatly reduces computational costs of solving a large system of equations.27

Relation of Proposition 1 to the Literature Proposition 1 shows that in the Armington
model, by observing changes in the full matrix of bilateral trade flow quantities ( d ln qni),
one can recover, to first-order, the full matrix of shocks to the composite bilateral trade costs
and productivities ( d ln (τni/ai)) that would rationalize the trade flow changes. This inversion
requires observing the initial bilateral expenditure shares and knowing the trade elasticity. The
second part of the result then maps the quantity changes to welfare effects. These results are
especially applicable in our setting: we observe changes in trade flows due to COVID lockdowns,
and we use Proposition 1 to recover the implied bilateral shocks and study the local and spillover
welfare impact of these shocks.

Proposition 1 is related to but, to our knowledge, different from several known results in the
literature. Arkolakis et al. (2012) provide sufficient statistic for the counterfactual change in
domestic welfare following a foreign shock. Our result instead provides an invertible mapping
between bilateral shocks and bilateral trade flows for the entire economy, not just welfare
changes in a single location. Allen et al. (2020) derive the first-order general equilibrium
response of prices to trade cost shocks; Proposition 1 instead provides how quantities respond.28

Kleinman et al. (2023) provide sufficient statistics of how equilibrium nominal and real income
respond to trade cost shocks but also do not concern trade flow quantities.

5 Structural Approaches

A key advantage of the reduced-form approach is the simplicity of the event-study setting that
enables us to estimate the effect of a lockdown in city i on truck flows involving city i. An
important limitation of the approach is that are unable to estimate the general equilibrium
spillover effects on truck flows along routes not involving cities under lockdowns.

We now use the model to estimate the general equilibrium and distributional effects of
lockdowns. Conceptually, we structurally estimate the effect of lockdowns in two steps. First,
we use the observed year-on-year trade flow quantity changes ( d lnQ) to recover the underlying
bilateral cost shocks ( d lnZ), exploiting the invertibility of the linear sufficient statistics G in

27Kleinman et al. (2023) show that linearized counterfactuals in this class of trade models almost coincide
with the nonlinear solution (e.g. see Dekle et al., 2008 and Caliendo et al., 2017) even for large shocks.

28While it is feasible to build upon Allen et al. (2020) to derive impacts on trade quantities, this specific
derivation is not explicit in the existing literature. To clarify, the goal of our derivations is not to claim that
Proposition 1 is groundbreaking, rather, it provides the specific result needed in our applied context to assess
trade cost shocks and welfare impact based on changes in trade quantities, which is not directly available from
prior studies.
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Proposition 1, where we compute G using the trade elasticity θ and the observed expenditure
share matrix S before the pandemic.

It is important to note that locking down one city can trigger bilateral shocks through het-
erogeneous responses to the lockdown across the other cities. While the reduced-form approach
can only estimate the effects of city-level lockdown, our structural model is capable of recovering
the full matrix of shocks to bilateral trade costs and productivities. Specifically, a lockdown in
city i may affect the city’s productivity (ai), cost of exporting from city i (i.e., τni), and the cost
of importing by the city (i.e., τin). So, the structural approach provides a way to examine the
validity of assuming lockdowns to be city-level shocks in the reduced-form approach. Regressing
the full set of time-varying, bilateral composite shocks d ln zni on exporter and importer-month
fixed effects yields an R2 of 0.85, suggesting that most variations of trade cost shocks are indeed
at the city level.

We then linearly project the recovered composite cost shocks d lnZ onto city-level lockdown
events to separately estimate the effect of partial and full-scale lockdowns on the within- and
between-city trade costs. Specifically, we assume parametrized trade cost shocks as

d ln zni,t =
∑

k∈{h,l}

(
βk1(n ̸= i) + γk1(n = i)

)
Dk

ni,t + εni,t, (9)

where 1(n ̸= i) and 1(n = i) are between- and within-city dummies that equal one if n ̸= i

and n = i, respectively. The coefficient βk captures the impact of lockdowns on between-city
composite costs, while γk captures the impact on within-city composite costs. Like in our
reduced-form approach (equation (3)), the term F (sni,t) can be added to control the severity
of the pandemic in the city pair (n, i).

We estimate (βk, γk) by minimizing the weighted sum of squared residuals between the
observed and simulated trade flow quantity changes in the general equilibrium. Let Ψ ≡
(βh, γh, βl, γl).

Ψ̂ = arg min
Ψ

∑
ni,t

Wni

(
d ln Q̂ni,t(Ψ)− d lnQni,t

)2
(10)

where d lnQni,t is the observed trade flow quantity change and d ln Q̂ni,t(Ψ) is the simulated
trade flow quantity change from our model given the value of Ψ and equation (9), Wni is a city-
pair weight. Different from equation (1), which examines the impact on bilateral trade flows
between a city-pair when either the importer or the exporter along this trade route undergoes a
lockdown, equation (10) exploits our theoretical result, Proposition 1, which inverts the entire
matrix of bilateral trade cost shocks from the changes in the bilateral trade flows.

The first-order approach we adopt enables us to obtain a closed-form solution, where we
obtain Ψ̂ as coefficients of a weighted regression of changes in trade flow quantities (stacking

22



the matrix d lnQ as a vector) on a transformation of the G matrix in Proposition 1 adjusted
for lockdown status.29

We provide details of the closed-form solution in the appendix.
In practice, we proxy d lnQni,t, for n ̸= i, by change in the truck flow from city i to n

( d ln qni,t). Our assumption is that bilateral truck flows are proportional to bilateral trade
quantities. Due to data constraints, we assume that truck loading factors remain unchanged in
counterfactuals. The city-to-city truck flow data do not measure within-city trade. To proxy
d lnQii,t, we assume the within-city truck flow change to equal the average truck flow change
on all routes connected to the city.

d lnQii,t =

∑
n ̸=i q

19
ni,t d ln qni,t∑
n ̸=i q

19
ni,t

. (11)

where q19ni,t denotes the truck flow between city i and city n in the same period t in 2019.30 Last,
we set Wni equal to the weight ωni in the reduced-form approach.

Equipped with the estimates (βk, γk) for k ∈ {l, h}, we can exploit the second part of
Proposition 1. We will conduct both an accounting exercise, decomposing the local and spillover
effects of lockdowns on the real income of any other city, and a counterfactual exercise, where
we predict the real income effects of hypothetical lockdowns of varying stringency. We conduct
these exercises in Section 6.

5.1 Results

We now turn to the structural approach. To obtain G, we assume θ = 4 and calibrate the
expenditure shares to the official provincial input output table in 2012 (see Appendix A.7 for
details).31 Note that the structural approach distinguishes the direction of trade flow. The
sample size, therefore, almost doubles that in the reduced-form approach.

The first column in Table 3 reports the structurally estimated βk and γk by (10), assuming
the cost specification (9). The between-city composite cost will increase by 0.24 log points if
there is a full-scale lockdown in the city pair. The within-city trade flow change, d lnQii,t,
disciplines the effect of lockdown on the within-city composite cost. This allows the structural

29G is a sufficient statistic that maps trade cost shocks into changes in trade flow quantities and as defined
in the appendix.

30The inferred changes are correlated with the changes in the number of visits to office buildings and shopping
malls according to mobile phone location data in Chen et al. (2021a) (correlation 0.66 for 2020 Q1).

31The results under different values of θ and the expenditure shares implied by alternative IO tables imply
similar real income effects. See Table A5 in the appendix. Note that in Proposition 1 welfare is independent
of trade elasticity. However, trade elasticity influences our structural estimation of lockdown’s impact on trade
quantity and, consequently, the welfare results. This can be seen by our assumption on trade cost shocks in
equation (9), where lockdown effects are parameterized by βk and γk. Trade elasticity affects the structural
estimates of βk and γk, though the effects are small.
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approach to identify γk. The estimates suggest a 0.39 log points increase in the within-city
composite cost by a full-scale lockdown. In line with the results in Table 2, the effect of partial
lockdown is much milder than full-scale lockdown. The increase in the between- and within
composite cost is 0.04 and 0.08 log points, respectively.

Table 3: Effect of Lockdown on Composite Cost, Structural Estimates

(1) (2) (3) (4) (5)

Dk
ni D̂k

ni

Full-scale lockdown (n ̸= i) 0.2415 0.2458 0.2179 0.5723 0.5238
(0.0260) (0.0261) (0.0249) (0.0298) (0.0306)

Full-scale lockdown (n = i) 0.3913 0.3952 0.3643 0.9641 0.9061
(0.0635) (0.0636) (0.0615) (0.0675) (0.0684)

Partial lockdown (n ̸= i) 0.0449 0.0484 0.0273 0.1411 0.1028
(0.0103) (0.0103) (0.0103) (0.0231) (0.0240)

Partial lockdown (n = i) 0.0809 0.0838 0.0593 0.2619 0.2125
(0.0228) (0.0227) (0.0223) (0.0541) (0.0544)

COVID Dummy (n ̸= i) 0.0090
(0.0021)

COVID Dummy (n = i) 0.0116
(0.0042)

ln(1 + Case) 0.0099 0.0086
(0.0010) (0.0009)

Time FE YES YES YES YES YES
City pair FE YES YES YES YES YES
City pair trend YES YES YES YES YES
Observations 419533 419533 419533 419533 419533
R-squared 0.3628 0.3633 0.3654 0.3665 0.3684

Note: The first four rows report the effect of lockdown on the between- and within-city composite cost. n ̸= i

and n = i refer to between- and within-city. Dk
ii and D̂k

ii are the city’s lockdown measures. COVID Dummy
equals one if the city pair n ̸= i (n = i) has new COVID cases and none of the cities have full-scale or partial
lockdowns. The other specifications are the same as those for Table 2.

To make sense of the estimates, we derive a formula on the trade flow quantity changes
in a partial equilibrium, where nominal wages are constant and lockdown in city n or i only

24



affects the goods price sold from i to n through the composite cost, but does not affect the
other prices.

d lnQp
ni,t = −(θ + 1) d ln zni,t (12)

where d lnQp
ni,t denotes the trade flow quantity change in the partial equilibrium and d ln zni,t

is from equation (9). The estimated βk and γk imply that a type-k lockdown will reduce the
between- and within-city trade flows by (θ + 1)βk and (θ + 1)γk percent, respectively, in the
partial equilibrium. The effect of full-scale lockdown on the between-city trade flow implied
by the estimated βk in the partial equilibrium is substantially larger than that estimated by
the reduced-form approach.32 The effects of partial lockdown are more similar. Note that a
lockdown will affect trade flows through two channels in the general equilibrium that are absent
in the partial equilibrium. First, the lockdown will reduce nominal wage in the locked down
city and amplify its effects on trade flows. Second, the lower nominal wage will reduce the
goods price sold from the city and, therefore, dampen the effects on trade flows. Our results
suggest that the second channel dominates the first in full-scale lockdown, implying that the
general equilibrium effects moderate economic losses of full-scale lockdown.

As in the reduced-form approach, we add COVID dummy to control for community-level
lockdown. The second column of Table 3 shows the results. Again, we find the effects of the
community-level lockdown to be small and the estimates of βk and γk are robust. We also
add F (sni,t) = b ln(1 +Caseni,t) to the cost specification and structurally estimate b. The third
column of Table 3 shows that the effects of full-scale lockdown become smaller after controlling
for the number of COVID cases but remain large and significant. Adding the control has a larger
effect on the estimates of partial lockdown, though. Both are consistent with the findings from
the reduced-form approach.

As in the reduced-form approach, the estimated coefficients of D̂k
ni,t are much larger (the

last two columns of the table). In the next section, we will use the estimates to perform policy
counterfactuals of one-month lockdowns.

6 The Economic Cost of Lockdown

In this section we quantify the economic implications of lockdown. We first derive a model-
based accounting framework that isolates the effects of locking down a city on itself, any other
city and the aggregate economy. The aggregate impacts will be further decomposed into local
and spillover components. Finally, we will conduct several counterfactual exercises to illustrate
the potential economic damage of a nationwide lockdown.33

32This result is robust to the choice of θ within reasonable range of 2 and 6.
33Our analysis is based on a static model and does not take intertemporal substitution into account. We

do want to note that, anecdotally, because the lockdowns typically occurred suddenly without prior notice,
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6.1 A Model-Based Accounting Framework

We apply Proposition 1, equation (9) and estimates in Column 5 of Table 3 to generate the city
level real income changes caused by the lockdown of city i (assuming no lockdowns in other
cities). Specifically,

d lnui,k
n ≡ ∂ lnun

∂ ln zii

γk +
∑
j ̸=i

[
∂ lnun

∂ ln zji

+
∂ lnun

∂ ln zij

]
βk, ∀k = h, l, (13)

where d lnui,h
n ( d lnui,l

n ) measures the impact of type-k lockdown in city i on the real income
of city n, taking into account the general equilibrium effects while shutting down the effects
of lockdown elsewhere that apply to goods shipping from any cities besides i. The partial
derivative ∂ lnun

/
∂ ln zji captures the sensitivity of real income in city n to the composite cost

for route (j, i). When n = j (n = i), the partial derivative captures the importer’s (exporter’s)
real income sensitivity to the route-specific composite cost shock; when n ̸∈ {j, i}, the partial
derivative captures the general equilibrium effect that propagate through the trade network
across cities.34 The lockdown of city i affects the composite cost of selling goods to itself, zii,
and to the other cities, zij with j ̸= i. So, the first term on the right-hand side of (13) is simply
the effect of locking down city i on the city’s real income, while the second term captures the
general equilibrium effect of the lockdown through its effects on the real income of other cities.

The percentage change of the real national income caused by a type-k lockdown in city i

can be expressed as a weighted average of the percentage change of local real income across
cities:

ûi,k
ag ≡

N∑
n=1

µnû
i,k
n , (14)

where ûi,k
n = exp( d lnui,k

n ) − 1 and µn is city n’s pre-shock real income share. Equation (14)
can be further decomposed into two components: The effect on the real income of the city itself
(local effect) and the effect on the real income of the other cities (spillover effect):

ûi,k
ag = µiû

i,k
i + ûi,k

so . (15)

where
ûi,k

so =
∑
n ̸=i

µnû
i,k
n .

shortages of even basic consumption and necessity goods were widely reported in the news and social media
throughout the lockdown periods, suggesting some limits to the scope of intertemporal substitution.

34Proposition 1 enables us to calculate the entire set of partial derivatives for any n, j, i as functions of the
pre-shock bilateral trade flows.
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6.2 Results

We use the full-scale lockdown of Shijiazhuang in January and February 2021 as an example.
Figure 3 plots its effect on each city (ûi,h

n ) in our model, assuming that no other cities are
locked down at the same time. The real income of Shijiazhuang would decline by 60%. The
real income losses for most of the other cities are negligible, though they can be larger than
0.2% for 20 cities. At the aggregate level, the lockdown reduces the real national income by
0.4%.

Figure 3: The Effects of Shijiazhuang Lockdown (%)

Note: The figure plots the effect of imposing full-scale lockdown on Shijiazhuang on each city’s real come.

The left panel of Figure 4 plots the effect of imposing a full-scale one-month lockdown in a
given city (with no lockdown in the other cities) on the real aggregate income (ûi,h

ag , ∀i). The
largest three effects come from Shanghai, Beijing and Shenzhen, where full-scale lockdown will
knock 2.7%, 2.5% and 1.9% off the real aggregate income, respectively. We decompose the
effect of a full-scale lockdown on the real national income into local and spillover effects. The
right panel of Figure 4 plots the contribution of spillover effects to the overall effects (ûi,h

so /û
i,h
ag ,

from equation (15)). The contribution of the spillover effects varies from 7 to 10 percent. If a
one-month full-scale lockdown is imposed on the four largest cities in China (Beijing, Shanghai,
Guangzhou, and Shenzhen), the four cities would lose their real income by 62% and the national
real income would fall by 8.7%, of which 8.5% is contributed by the spillover effects. See Table
A5 in the appendix for the result and its robustness.

The effect of locking down a city on the real national income is related to the city’s economic
size and its position in the network. To quantify the relative importance of the two factors, we
regress −ûi,h

ag on de-meaned city-level GDP and de-meaned eigenvector centrality derived from
the city-to-city trade matrix excluding diagonal elements. Given the high correlation between
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Figure 4: The Effect of Full-Scale Lockdown on the Real National Income

(a) Overall effect (b) Spillover effect

Note: The left panel plots the overall effect of imposing full-scale lockdown on each city on the real national
income. The overall effect consists of local and spillover effects. The right panel plots the contribution of the
spillover effect to the overall effect.

GDP and centrality measures, we employ Shapley Value regression. The results reveal that
GDP and eigenvector centrality contribute almost equally to explaining variations in −ûi,h

ag ,
accounting for 51% and 49% respectively. Similar results hold for −ûi,h

so , where both GDP and
eigenvector centrality explain half of the variations.

6.3 Economic Cost of Fighting Omicron

Lockdowns remained rare before the arrival of highly contagious Omicron variant. However,
the rapid surge of Omicron infections in 2023 changed the landscape drastically. Many more
cities were under lockdown for a much longer duration. Moreover, information about city-level
lockdown became more scarce as public announcements of COVID policy were more specific
to counties and districts. To estimate the scale of lockdowns during the Omicron surge, we
apply the same approach to counties and districts with two modifications. We replace city with
county/district and add “static management in all areas”, a new euphemism for lockdown, to
the keywords. We then manually select the official announcements about county/district-level
lockdown from the scraped results. The left panel of Figure 5 shows the monthly population
share of counties/districts under lockdown from January to June, 2022. In the first months of
2022, only 0.4% of China’s population were under lockdown. The share increased sharply to
7.1% in March and further rose to the peak of 9.7% in May.

Using the effect of full-scale lockdown estimated from the pre-Omicron period, we can easily
calculate aggregate welfare losses of the lockdowns in the Omicron surge implied by our model.
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We assume the fraction of the locked down cities in our model, denoted by the set At, to be the
same as the share of the population under lockdown for each month t. The percentage change
of the real national income caused by one-month full-scale lockdown in At follows

Ût =
∑
i∈At

µiû
i,h
ag , (16)

where µi is city i’s pre-shock real income share and ûi,h
ag is the percentage change of the real

national income caused by a full-scale lockdown in city i, which is defined in equation (14).
The dotted line in the right panel of Figure 5 shows the results. Aggregate welfare drops by
10.4% and 10.6% in April and May, respectively.

Figure 5: Lockdown Share and Welfare Loss in 2022
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Note: The left panel plots the population share of the counties and districts under lockdown. The dashed line in
the right panel plots the change in aggregate welfare or, equivalently, total truck flows predicted by the model.
The solid line plots the actual change in total truck flows in the data.

Interestingly, the actual declines in the truck flows (the solid line) in the two months are
much larger than the prediction of the model. There are two possibilities. First, lockdowns in
the Omicron surge were more strict than before and, therefore, inflicted larger economic costs.
Second, we undercount the regions under lockdown. We cannot disentangle the two effects
using the existing data and will have to leave it for future research.
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7 Conclusion

This paper studies how China’s lockdown policy that tries to “nip COVID-19 in the bud”
causally affects city-to-city truck flows. Using a DiD design, we find that imposing full-scale
lockdown on a city for a month halves the truck flows connected to the city in the month. While
locking down one city has a small effect on the real national income in a large economy like
China, implementing lockdown on a larger scale might cause significant economic losses. If a
one-month full-scale lockdown is imposed on the four largest cities in China (Beijing, Shanghai,
Guangzhou, and Shenzhen), the four cities would lose their real income by 62% and the real
national income would fall by 8.7%, of which 8.5% is contributed by the spillover effects. The
scenario was inconceivable before the emergence of Omicron in China. But in April and May
of 2022, at least 9% of China’s population (including Shanghai) were under lockdown, which
translates into a 10% decline in the real national income in our model.

There are many reasons to believe that our estimates only capture the effects of lockdown
in the short run. Its effects on expectations, saving and investment decisions in the longer term
are all ignored in the current analysis. Moreover, our estimates alone do not provide evidence
for or against immediate lockdowns in small COVID outbreaks, a central feature of China’s
zero-COVID policy. However, they may improve our understanding of the economic cost side
of the policy and, therefore, help policymakers to balance the benefits and costs of lockdown.
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A Appendix

A.1 Lockdown Events
Table A1: Full-Scale Lockdowns

City Starting date Ending date Lockdown days COVID Cases ∆ Truck Flow

Jilin 2020/5/13 2020/6/7 26 44 (12.1) -0.38
Shijiangzhuang 2021/1/7 2021/1/29 23 865 (77) -0.73
Langfang 2021/1/12 2021/1/16 5 1 (0.2) -0.29
Suihua 2021/1/12 2021/2/6 26 489 (130.2) -0.59
Xingtai 2021/1/12 2021/1/16 5 71 (10) -0.74
Tonghua 2021/1/15 2021/2/21 38 307 (235.6) -0.25
Songyuan 2021/1/20 2021/2/3* 15 4 (1.8) -0.23
Lu’an 2021/5/18 2021/6/8 22 8 (1.8) -0.001
Yangzhou 2021/7/31 2021/9/3 35 570 (125) -0.51
Zhangjiajie 2021/8/1 2021/8/25 25 67 (44.2) -1.24
Zhuzhou 2021/8/1 2021/8/20 20 29 (7.4) -0.20
Jiayuguan 2021/10/23 2021/11/4* 13 5 (15.9) -0.12
Zhangye 2021/10/23 2021/11/19 28 15 (13.3) -0.06
Heihe 2021/10/28 2021/12/22 56 271 (210.7) -0.16
Xi’an 2021/12/23 2022/1/15 24 2052 (158.3) -0.75
Anyang 2022/1/10 2022/1/31* 22 465 (84.9) -0.62

Note: The definitions are the same as Table 1. The ending date with * is inferred from lockdown ended 7 days
prior to the “clearance” day or the end of our sample period (2022/1/31).
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Table A2: Partial Lockdowns

City Starting date Ending date Lockdown days COVID Cases ∆ Truck Flow

Baoding 2020/6/18 2020/7/2* 15 16 (1.4) -0.09
Dehong 2020/9/14 2020/9/21 8 0 (0) 0.06
Dehong 2021/7/7 2021/7/25 19 88 (66.9) -0.17
Dehong 2021/3/30 2021/4/26 28 93 (70.7) 0.06
Qiqihaer 2021/1/12 2021/2/7 27 1 (0.2) -0.05
Haerbin 2021/9/24 2021/10/13* 20 89 (8.9) -0.03
Haerbin 2021/12/8 2021/12/17 10 42 (4.2) -0.18
Haerbin 2021/1/18 2021/2/12* 26 146 (14.6) -0.13
Huaian 2021/7/29 2021/8/16 19 12 (2.6) -0.12
Xiangxi 2021/8/1 2021/8/7* 7 0 (0) -0.60
Jingmen 2021/8/7 2021/8/23 17 43 (16.6) -0.48
Tianshui 2021/10/27 2021/11/25 30 39 (13.1) -0.61
Zhoukou 2021/11/4 2021/11/25 22 18 (2) -0.10
Hulunbeier 2021/11/27 2021/12/25 29 558 (249.5) -0.33
Shaoxing 2021/12/11 2021/12/31 21 387 (73.1) -0.31
Fangchenggang 2021/12/22 2022/1/8 18 20 (19.1) -0.21
Xianyang 2021/12/23 2022/1/20 29 15 (3.8) -0.58
Weinan 2021/12/26 2022/1/9 15 1 (0.2) -0.61
Xuchang 2022/1/2 2022/1/31* 30 365 (83.3) -0.11
Yan’an 2022/1/3 2022/1/13 11 2 (0.9) -0.58
Xinyang 2022/1/12 2022/1/16 5 3 (0.5) -0.32
Mudanjiang 2022/1/26 2022/1/31* 6 4 (1.7) -0.16

Note: The definitions are the same as Table 1. The ending date with * is inferred from lockdown ended 7 days
prior to the “clearance” day or the end of our sample period (2022/1/31).

A.2 Robustness Check of DiD results

The recent literature shows that the two-way fixed effects (TWFE) estimator is equal to a
weighted sum of the treatment effect in each treated cell, where some weights may be negative.
The negative weights are an issue when the treatment effects are heterogeneous across groups
or periods. de Chaisemartin and D’Haultfœuille (2020) suggest a diagnosis by checking the
weights attached to the TWFE regressions and the absolute value of the coefficient relative
to the standard deviation of the weights. If many weights are negative and the ratio is not
very large, the TWFE estimator is likely biased. They also propose a new estimator, “DIDM”,
which is valid even with treatment effect heterogeneity. It estimates the average treatment
effect across all the cells whose treatment changes from t − 1 to t. A test for pretrends is
provided.35

35Goodman-Bacon (2021) and Baker et al. (2022) also propose similar estimators to correct the potential
bias of the TWFE regressions.

38



Table A3: Robustness Check of the Lockdown Effects

Two-way fixed effects Joiners’ effect in “DIDM”
(1) (2) (3) (4)

2 periods before -0.0019 -0.0319
full-scale lockdown (0.0164) (0.0195)

1 period before 0.0300 0.0351
full-scale lockdown (0.0182) (0.0180)

Full-scale lockdown -0.4028 -0.4422
(0.0458) (0.0512)

2 periods before 0.0314 -0.0103
partial lockdown (0.0356) (0.0247)

1 period before -0.0078 -0.0442
partial lockdown (0.0264) (0.0296)

Partial lockdown -0.0931 -0.0901
(0.0293) (0.0193)

Time FE YES YES YES YES
City pair FE YES YES YES YES
City pair trend YES YES YES YES
Observations 204939 204910 204939 204910

Note: The first two columns report the TWFE estimators. The last two columns report the estimated joiners’
effects using de Chaisemartin and D’Haultfœuille (2020).

Note that “DIDM” estimates both the joiners’ and leavers’ treatment effects. The joiners’
treatment effect compares the evolution of the mean outcome between t − 1 and t in two sets
of groups: the joiners (a group from untreated to treated) and those remaining untreated. The
leavers’ treatment effect compares the evolution of the mean outcome between t − 1 and t

between the leavers (a group from treated to untreated) and those remaining treated. Since we
have few observations that have been treated in two consecutive periods, the control group for
leavers, we choose to estimate the joiners’ effect only.

To make the TWFE estimator be entirely comparable to that for the joiners’ effect in
“DIDM”, we only keep the observations at T0 for each lockdown period [T0, T1]. This drops 721
observations with lockdown in total.36 Reassuringly, we find no negative weights in our TWFE
regressions. Table A3 compares the TWFE estimators (column 1 and 2, which are very close

36Keeping the observations in the sample would lead to essentially the same results.
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to those in the text) and those by “DIDM” (column 3 and 4). Both methods show no evidence
for pretrends. The point estimates are also very similar.

A.3 Robustness Check of City-Specific Time-Varying Shocks

In the first robustness check, we estimate exporter- and importer-time fixed effects from

d ln qni,t = γi,t + πn,t + δni + ϵni,t, (17)

where γi,t and πn,t are the exporter- and importer-time fixed effects. We then estimate the
effect of lockdown on the fixed effects. In the event study, we replace d ln qni,t with γ̂i,t + π̂n,t

as the dependent variable.

γ̂i,t + π̂n,t =
∑

k∈{h,l}

(
J̄∑

j=1

αk
−jPREk,j

ni,t + αk
0D

k
ni,t +

J̄∑
j=1

αk
jPOST k,j

ni,t

)
+ δni + νt + ηnit+ ϵni,t. (18)

The results are plotted in Figure A1. The estimated effect of full-scale and partial lockdown
is -0.37 and -0.10 log points, close to the estimates of -0.41 and -0.10 log points in the benchmark
case.

Figure A1: Event Study: Importer- and Exporter-Time Fixed Effects
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(a) Full-scale lockdown (b) Partial lockdown

Note: The figure plots the estimated αh
j (left panel) and αl

j (right panel) in equation (18), together with their
95% confidence intervals.

In the second robustness check, we interact exporter and importer dummies with year or
semi-year dummies to control for the city-specific characteristics that vary at lower frequency
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as in (19). The dummies are added to the event study. Our results are robust.

d ln qsni,t =
∑

k∈{h,l}

(
J̄∑

j=1

αk
−jPREk,j

ni,t + αk
0D

k
ni,t +

J̄∑
j=1

αk
jPOST k,j

ni,t

)
+δni + νt + ηnit+ γi,s + πn,s + ϵni,t, (19)

where s denotes the year or semi-year; γi,s and πn,s are the exporter and importer dummies
interacted with year or semi-year dummies, respectively.

Figure A2: Event Study Controlling for Exporter- and Importer Fixed Effects Interacted with
Semi-Year or Year Dummies
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Note: The figure plots the estimated αh
j (left panels) and αl

j (right panels) in equation (19). The top (bottom)
panels control for the exporter- and importer fixed effects interacted with semi-year (year) dummies.
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A.4 Robustness Check of City-Level Regression

We run the following city-month-level regression.

d ln qi,t =
∑

k∈{h,l}

βkCk
i,t + δi + νt + ηit+ ϵi,t, (20)

where Ck
i,t is a city-specific lockdown dummy.

Ck
i,t =

1 if type-k lockdown in city i at t

0 otherwise
(21)

For illustrative purpose, We write our lockdown dummy Dk
ni,t as a function of Ck

i,t:

Dk
ni,t = Ck

i,t + Ck
n,t. (22)

Since double lockdowns (i.e., both city i and n are under lockdown) are rare, we ignore Ck
i,t×Ck′

n,t

for simplicity.
We next use the main specification (1) to aggregate the change in bilateral truck flows to

the city level.

d ln qi,t ≡
∑
n ̸=i

wni d ln qni,t

=
∑
n ̸=i

wni

αk
∑

k∈{h,l}

Dk
ni,t + δni + νt + ηnit+ ϵni,t


=
∑

k∈{h,l}

αkCk
i,t +

∑
k∈{h,l}

αk
∑
n ̸=i

wniC
k
n,t︸ ︷︷ ︸

the term missing in (20)

+ δi + νt + ηit+
∑
n ̸=i

wniϵni,t, (23)

where wni is the share of exports from i to n in total exports of i in 2019. Compared with
equation (23) aggregated from the route-level regression, the city-level regression (20) omits∑

n ̸=i α
kwniC

k
n,t – i.e., the effects of locking down city i’s importers on its exports. The omitted

terms do not affect the treatment group (Ck
i,t = 1 and Ck

n,t = 1 for n ̸= i are mutually exclusive
without double lockdown). However, the control group is affected. Locking down city i will
affect the cities in the control group that export to city i.

We then generalize (20) to the event-study approach.

d ln qi,t =
∑

k∈{h,l}

(
J̄∑

j=1

βk
−jPREk,j

i,t + βk
0C

k
i,t +

J̄∑
j=1

βk
j POST k,j

i,t

)
+ δi + νt + ηit+ ϵi,t. (24)
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To be consistent with our specification, we use the sample without double lockdowns.37 Figure
A3 shows the results. We also apply route-level regression to the same sample. As expected,
the estimated effect of major lockdown reduces from 0.387 using route-level regression to 0.373
using city-level regression. The effect of minor lockdown is essentially the same. The simpler
city-level regression gives quantitatively similar estimates.

Figure A3: Event Study at City Level
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(a) Full-scale lockdown (b) Partial lockdown

Note: The figure plots the estimated βh
j (left panel) and βl

j (right panel) in equation (24), together with their
95% confidence intervals.

A.5 Violation of SUTVA

Figure A4 plots the results for different control groups. The top and middle panels show that
the effects of full-scale and partial lockdown are only slightly affected by more restrictive control
groups. The bottom panels show our results are also robust to controls of lockdowns along the
routes.

37Note that there are only 8 observations of double full-scale lockdown, compared with 1,017 observations of
single full-scale lockdown.
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Figure A4: Event Study: Robustness Checks
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Note: The figure plots the estimated αh
j (left panel) and αl

j (right panel) in (1) of the paper with a “cleaner”
control group, together with their 95% confidence intervals. The top, middle, and bottom panels exclude
neighbors, important trading partners, and city pairs with lockdown along the route, respectively.
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The specification for route-specific regression is

d ln qni,t =
∑

k∈{h,l}

αkDk
ni,t + δni + ηnit+ ϵni,t. (25)

The distribution of the estimated values of αk across city pairs are shown in Figure A5. The
average, weighted by the corresponding route’s total truck flows in 2019, is -0.38 and -0.15 for
full-scale and partial lockdown, respectively.38

Figure A5: Distribution of the Estimated Values of αk
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Note: The figure plots the distribution of the estimated αh
j (solid line) and αl

j (dashed line) in equation (25).
Each observation’s density is weighted by the corresponding route’s total truck flows in 2019.

To test the substitutability of truck flows between the city that is under lockdown and the
other cities that are not, we construct a variable for city i that measures the change in total
truck flows to its neighboring cities but excludes the change in truck flows from city i.

d ln qneighbori,t ≡
∑

j∈Ni & Ck
j,t=0

W i
j,t

∑
n ̸=i & Ck

n,t=0

wi
jn,t d ln qjn,t, (26)

where Ni is the set of city i’s neighboring cities, W i
j,t is city j’s truck flow share in city i’s

neighboring and non-locked down cities, wi
jn,t is route jn’s truck flow share in all non-locked

down routes connected to city j (also excluding the route ji), Ck
n,t and Ck

j,t are lockdown dummy
variables as defined in equation (21).

38The weighted standard deviation is 0.17 and 0.25 for full-scale and partial lockdown, respectively.
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If city i’s trading partners can easily switch to another city, locking down city i should lead
to an increase in truck flows to its neighbors from cities other than i. We test the hypothesis
in the following event study.

d ln qneighbori,t =
∑

k∈{h,l}

(
J̄∑

j=1

βk
−jPREk,j

i,t + βk
0C

k
i,t +

J̄∑
j=1

βk
j POST k,j

i,t

)
+ δi + νt + ηit+ ϵi,t, (27)

Figure A6 plots the estimation results. The effects on d ln qneighbori,t are small and insignificant.

Figure A6: Effects of Lockdown on Neighboring Cities
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(a) Full-scale lockdown (b) Partial lockdown

Note: The figure plots the estimated βh
j (left panel) and βl

j (right panel) in equation (27), together with their
95% confidence intervals.

A.6 City-to-City Population Flows

Following Fang et al. (2020), we use two population flow indicators from Baidu Migration Index
(BMI, https://qianxi.baidu.com): city-level daily in- and out-migration index, denoted by
IMi,t and OMi,t, respectively. According to Baidu’s definition, these two indices are comparable
across cities and over time. The data covers 364 Chinese cities in the Chinese new year period
(i.e., 24 days before and 36 days after the Chinese new year by the lunar calendar) in 2019 and
2020, and the periods of April-June and September-December in 2020, and the whole period
after January 19, 2021.

BMI also provides the share of inflows, denoted by IMSni,t, from the top 100 origination
cities (i) to each of the 364 cities (n) and the share of outflows, denoted by OMSni,t, to the top
100 destination cities (n) from each of the 364 cities (i). Two remarks are in order. First, the
population inflows from and outflows to the top 100 origination and destination cities account
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for 97% of the total population flows in BMI. Second, Both IMn,t×IMSni,t and OMi,t×OMSni,t

measure the population flow from city i to city n and, therefore, should be identical. Yet, we
find small differences between the two measures in 2019.39 So we take average to get Flowni,t,
the index for population flow from i to n:

Flowni,t =
1

2
(IMn,t × IMSni,t +OMi,t ×OMSni,t). (28)

We benchmark truck flows against the same period in 2019. Since the 2019 BMI only covers
the Chinese new year period, we can only use the change in population flows relative to the
same period in 2019 by the lunar calendar. Therefore, our BMI sample only covers the Chinese
new year in 2021 and 2022 (before January 31, 2022). The sample covers 8 out of 16 full-scale
lockdowns and 10 out of 22 partial lockdowns. We convert daily data ( d lnFlowni,t) into weekly
data by taking the average of d lnFlowni,t in the week. We then apply the same event study
approach to the change in city-pair population flows.

Figure A7: Event Study: Weekly City-Pair Population Flows
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(a) Full-scale lockdown (b) Partial lockdown

Note: The figure plots the effects of full-scale lockdown (left panel) and partial lockdown (right panel) on
d lnFlowni,t, together with their 95% confidence intervals.

The estimates are plotted in Figure A7. First note that there are no observations to estimate
the pre-trend for full-scale lockdowns. All the six full-scale lockdowns in our BMI sample
happened 23 days earlier than the Chinese new year. While we are unable to rule out a pre-
trend, we find large effects of a full-scale lockdown on weekly population flows (left panel).
On impact, population flows drop by 2.18 log points. The effect gradually diminishes to an
insignificant level in six weeks after the end of the lockdown. The partial lockdowns in the BMI

39The mean of the two measures differs by 0.3% in 2019.
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sample have a wider spread over the Chinese new year period. We find no pre-trend and smaller
effects (right panel). Population flows rebound to a higher level in the third week and peak in
the fourth week after the lockdown ends. The effect becomes insignificant in the seventh week.
Due to data limitations, we cannot examine the dynamics of the lockdown effects in a longer
term.

A.7 Estimation of Expenditure Share Matrix

The city-to-city expenditure share matrix is not directly observable. We adopt two approaches
to estimate the matrix. The first approach is to apply the gravity model to estimate city-to-city
trade flows by China’s regional input-output table in 2012, the most recent one published by
China’s National Bureau of Statistics. Some more recent non-official regional IO tables are also
used for robustness check. The second approach is to use city-to-city trade flows in Gao et al.
(2020) and Luo (2020), which are directly constructed from China’s value-added invoice data.40

The expenditure shares estimated using the NBS IO table show strong correlation with those
derived from CEADS2012 and CEADS2015, with correlation coefficients of 0.973 and 0.996,
respectively. The correlation coefficient with estimates based on invoice data is 0.668. The
estimated economic impacts are highly correlated across different approaches.

The gravity model assumes that the trade flow between two cities, (Xij), is a function of the
total supply of the exporter, (Ej), the total demand of the importer, (Mi), and the impedance
of transportation costs, for which the distance between two regions is often used as a proxy
(Dij).41 The standard gravity model is as follows:

Xij = Gβ0
(Ej)

β1 × (Mi)
β2

(Dij)
β3

,

where G is a constant term. The equation in logarithmic form is:

lnXij = β0 + β1 lnEj + β2 lnMi + β3 lnDij.

Due to limited information on exports and imports at the city level, we make the following
assumptions:42

lnEj = α0 + α1 lnGDPj,

lnMi = γ0 + γ1 lnGDPi.

40See Gao et al. (2020) for a detailed description that connects China’s value-added invoice tax data to the
regional IO table.

41See more discussions about the gravity model in Carrère et al. (2020).
42In estimating the expenditure share matrix, we employ a log-linear relationship between cities’ trade flows

(exports and imports) and their GDP. Our model, instead, focuses on the short-term effects of trade cost shocks.
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The gravity model becomes:

lnXij = η0 + η1 lnGDPj + η2 lnGDPi + η3 lnDij,

where η0 = β0 + β1α0 + β2γ0, η1 = β1α1, η2 = β2γ1 and η3 = β3.
We now use the data at the provincial level to estimate the coefficients {η0, η1, η2, η3, α0, α1, γ0, γ1},

which will be used to back out city-to-city trade flows. The province-to-province trade flow
data and provincial GDP are from Liu et al. (2018). The distance between two provinces is
proxied by the distance between their capital cities. The results of the regressions are reported
in Table A4.

Table A4: Regression of Gravity Model

(1) (2) (3)
lnXpq lnEq lnMp

lnGDPq 1.0031 1.0692
(0.0257) (0.0243)

lnGDPp 0.7256 1.0033
(0.0188) (0.0162)

lnDpq -0.1241
(0.0287)

Constant -10.5737 0.2891 0.9544
(0.3895) (0.2351) (0.1489)

Observations 917 31 31
R-squared 0.8352 0.9908 0.9911

Note: Robust standard errors are reported in parentheses.

We use the results in Columns (1) and (2) to back out city-to-city trade flow, Xij

Xij =

{
exp (η̂0 + η̂1 lnGDPj + η̂2 lnGDPi + η̂3 lnDij) , if i ̸= j

exp (α̂0 + α̂1 lnGDPj)−
∑

n ̸=j Xnj , if i = j

Note that the within-city trade flow of city j is estimated by its total exports minus the sum of
its between-city exports.43 The estimated Xij gives the expenditure share matrix used in the
paper.

We then apply the same method to the 2012 and 2015 regional IO tables constructed by
Ou et al. (2019) (CEADS2012) and Zheng et al. (2020) (CEADS2015).44 Last, we also use

43One may also use Column (1) and (3) to back out Xij and the expenditure share matrix. The results are
similar.

44CEADS2012 and CEADS2015 are from https://www.ceads.net/data/input_output_tables/.
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the city-to-city trade flows constructed by value-added invoice tax data in 2018 (Luo, 2020) to
estimate the economic costs of lockdowns.

A.8 Additional Tables and Figures

Figure A8: Truck Outflow, GDP and Night Light
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Note: The nightlight data is from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band
(DNB), which uses average radiance composite images produced by the Earth Observations. These images are
produced in 15 arc-second geographic grids. We use the average radiance value of all observations in a city as
the city-level nightlight intensity.
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Figure A9: Lockdown and City’s Size
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(a) Lockdown and city’s truck flows (b) Lockdown and city’s population

Note: We sort cities into 20 groups of equal size by the total truck flows connected to the city in 2019 (left
panel) or total population of the city in 2020 (right panel). The x-axis is the log truck flow (left panel) or log
population (right panel). The y-axis is the proportion of the cities that experienced lockdown in each group.
The slope of the fitted line (solid line) is statistically insignificant in both panels.

Figure A10: Event Study with Two-way Clustering
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Note: The figure reproduces Figure 2, with the standard errors clustered at both cities in the city pair (Cameron
et al., 2011).
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Table A5: Effects of Lockdown on Real Income, Robustness Check

Benchmark θ = 2 θ = 6 CEADS2012 CEADS2015 INVOICE

Shijiazhuang
Real income change of lockdown cities -60.45% -59.43% -60.72% -61.47% -59.38% -57.70%
Real national income change -0.40% -0.41% -0.39% -0.41% -0.39% -0.40%
Spillover effects 8.57% 13.60% 6.45% 9.73% 7.94% 13.33%

Big 4 cities
Real income change of lockdown cities -61.85% -60.74% -62.16% -63.06% -59.78% -56.01%
Real national income change -8.69% -8.92% -8.58% -8.92% -8.34% -9.05%
Spillover effects 8.54% 12.51% 6.92% 9.22% 7.98% 20.47%

All cities Real national income change -51.82% -51.79% -51.71% -50.27% -51.83% -46.62%

Note: The first column reports the benchmark counterfactual results. The second and third columns report
the results in the model with θ = 2 and θ = 6, respectively. The last three columns maintain the benchmark
value of θ but use different expenditure share matrices implied by the city-level IO tables in Appendix A.7.
“Big 4 cities” refers to Beijing, Shanghai, Guangzhou, and Shenzhen. The effects of full-scale lockdown in all
the robustness checks are obtained by conducting the counterfactual exercises in the models with re-estimated
lockdown effects on the between- and within-city composite costs under different values of θ or expenditure
share matrix.

A.9 Proof of Proposition 1

The consumer in city n needs to solve the following utility maximization problem

max
{Qni}

un =

(
N∑
i=1

Q
θ

θ+1

ni

) θ+1
θ

subject to
N∑
i=1

(τniwi/ai)Qni = en,

where Qni is the trade flows of goods i consumed in city n in quantity; θ+1 is the elasticity of
substitution across goods; τniwi/ai is the price of goods i to city n; and en ≡ wnℓn + d̄n is the
nominal total expenditure of city n. The first-order conditions of the above problem are

Qni

Qnk

=

(
τniwi/ai
τnkwk/ak

)−(1+θ)

, ∀i, k = 1, ..., N. (29)

Equation (29) directly gives the expression of the equilibrium expenditure share Sni as in the
second part of equation (6).

Let e be the vector of nominal expenditure and π be the vector of nominal income (πn ≡
wnℓn). We also define

Tni ≡ Sinei/πn

as the income share of city n derived from market i.
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Then we have

π′ = e′S (30)

e′ = π′T (31)

Let d as the vector of city n’s income-to-expenditure ratio (dn ≡ πn/en), which is equal to 1
with balanced trade. Let D ≡ Diag(d) be the diagonalization of the vector d.

We define the average changes in outgoing costs from city i as

d lnZout
i =

∑
n

Tin d ln zni,

and the average changes in incoming costs to city i as

d lnZin
i =

∑
n

Sin d ln zin.

Taking total differentiation of equations (4), (6) and (7) and putting them together, we have

(θ + 1) d ln πn = θ

(∑
i

Tni d lnZ
in
i − d lnZout

n

)
+ θ

∑
i,k

TniSik d ln πk +
∑
i

Tni d ln ei,

or in matrix

d lnπ = [(θ + 1)1− θTS − TD + 1π′]
−1

θ(T d lnZin − d lnZout) (32)

Again from equation (6) we have

d lnQni = d lnSni + d ln en − d ln πi − d ln zni

= −(θ + 1) ( d ln zni + d ln πi) + θ d lnZin
n + θ

∑
k

Snk d ln πk + d ln en,

and in matrix

d lnQ = −(θ + 1) ( d lnZ + 1 d lnπ′) + θ d lnZin1′ + (θS +D) d lnπ1′ (33)
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Now we stack the matrixes d lnZ and d lnQ into vectors d lnZ and d lnQ, respectively:

d lnZ ≡



d ln z11
...

d ln z1N
...

d ln zN1

...
d ln zNN


N2×1

d lnQ ≡



d lnQ11

...
d lnQ1N

...
d lnQN1

...
d lnQNN


N2×1

Equation (32) can be simplified as

d lnπ = θV
(
T S̃ − T̃

)
d lnZ , (34)

where V = [(θ + 1)I − θTS − TD + 1π′]−1 and

S̃ =


S1

. . .
SN


N×N2

with Sn =
[
Sn1 · · · SnN

]
1×N

,

T̃ =
[
T1 · · · TN

]
N×N2

with Tn =


T1n

. . .
TNn


N×N

.

Together with equations (33) and (34), we have

d lnQ = G d lnZ (35)

where G = −(θ+ 1)I +
[
−(θ + 1)Iout + I in(θS +D)

]
θV

(
T S̃ − T̃

)
+ θI inS̃ is an N2 ×N2

matrix; I is an N2 ×N2 identity matrix; I is an N ×N identity matrix; 1 is an N × 1 vector
with all the entries equal to one; and

Iout =


I
...
I


N2×N

I in =


1

. . .
1


N2×N

This proves the first part of Proposition 1.
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Next, total differentiation on equation (5) gives us

d lnun =
N∑
i=1

Q
θ/(θ+1)
ni∑N

k=1 Q
θ/(θ+1)
nk

d lnQni. (36)

With equations (6) and (29), we have

Q
θ/(θ+1)
ni∑N

k=1 Q
θ/(θ+1)
nk

=
(τniwi/zi)

−θ∑N
k=1 (τnkwk/zk)

−θ
= Sni. (37)

Taking equation (37) into equation (36), we have

d lnun =
N∑
i=1

Sni d lnQni,

which proves the second part of Proposition 1.

A.10 Closed-form Solution of Structural Approaches

To obtain analytical expressions for closed-form solution in structural approaches, we introduce
the following notations:

d lnQt ≡



d lnQ11,t

...
d lnQ1N,t

...
d lnQN1,t

...
d lnQNN,t


N2×1

, Dk
t ≡



Dk
11,t
...

Dk
1N,t
...

Dk
N1,t
...

Dk
NN,t


N2×1

, W t ≡



W11

...
W1N

...
WN1

...
WNN


N2×1

for k = h, l and t = 1, 2, · · · , T . Also let

I(n = i) ≡



1
. . .

1(n = i)
. . .

1


N2×N2

, I(n ̸= i) ≡



0
. . .

1(n ̸= i)
. . .

0


N2×N2
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By Proposition 1, the simulated trade flow quantity changes can be written as

d ln Q̂t = G
[
I(n ̸= i)Dt I(n = i)Dt

]
Ψ, (38)

where

Dt =
[
Dh

t Dl
t

]
, Ψ =


βh

βl

γh

γl

 (39)

Last, let

X =


GI(n ̸= i)D1 GI(n = i)D1

... ...

... ...
GI(n ̸= i)DT GI(n = i)DT

 ,Y =


d lnQ1

...

...
d lnQT

 ,W =


W1

...

...
WT

 ,

where T denotes the total number of periods in our sample.
The close-formed solution to the estimation of Ψ in (10) is given by

Ψ̂ = (X ′WX)
−1

X ′WY .
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