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Abstract

Do government-funded guarantees and interest rate caps primarily bene�t borrowers or
lenders under imperfect competition? We study how bank concentration impacts the e�ec-
tiveness of these policy interventions in the small business loan market. Using data from the
Small Business Administration’s (SBA) Express Loan Program, we estimate a tractable model
of bank competition with endogenous interest rates, loan size, and take-up. We introduce a
novel methodology that exploits loan “bunching” in the two-dimensional contract space of
loan size and interest rates, utilizing a discontinuity in the SBA’s interest rate cap. In concen-
trated markets, we �nd that a moderate tightening of the lending rate cap to a uniform 4%
across all loan sizes would increase borrower surplus by more than 1%, despite the rationing
of some loans. In concentrated markets with a 50% loan guarantee, each government dollar
spent raises borrower surplus by $0.64, boosts lender surplus by $0.34, and generates $0.02 of
deadweight loss.
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1 Introduction

Bank lending is an important �nancing channel for young and small �rms and is therefore
critically important for the aggregate economy (Kaplan and Zingales (1997); Adelino, Ma and
Robinson (2017)). In many countries, governments stimulate lending to small businesses through
loan guarantees (Lelarge, Sraer and Thesmar (2010)) and by imposing interest rate caps (Maimbo
and Gallegos (2014)). Yet, reliance on geographic proximity for small business lending (Petersen
and Rajan (1994); Nguyen (2019)) can give banks substantial market power (Drechsler, Savov and
Schnabl (2017)) and potentially cause under-provision of credit. How does bank market power
(Egan, Hortaçsu and Matvos (2017); Carlson, Correia and Luck (2019); Benetton (2018)) impact
the pass-through of indirect loan guarantees to borrowers? Do interest rate caps bene�t small
business borrowers, and is there room for better policy? Despite broad academic and policy
interest, these remain open questions.

In this paper, we develop a novel two-dimensional bunching estimator to quantify banks’ mar-
ket power and evaluate the e�ectiveness of policy interventions, utilizing data on loans made
through the federal Small Business Administration (SBA). The SBA partially guarantees loans
made by commercial lenders to in-need small businesses that are otherwise rejected by all other
sources of external �nancing sources (Brown and Earle (2017); Granja, Leuz and Rajan (2018)).
We study loans that are subject to an interest rate cap that tightens discontinuously for loans
larger than $50,000. This “notch” in the interest rate cap imposes a size-dependent constraint on
the set of loans that can be o�ered and generates excess mass in the distribution of loan contracts
along the cap and at the discontinuity.

The distribution of excess mass—which encodes how banks react to the policy discontinuity—
is indicative of bank’s market power. We illustrate this by writing down and estimating a tractable
model that links the observed distributional distortions to parameters governing imperfect com-
petition. We �nd quantitatively substantial market power and ine�ciencies: depending on the
level of market power, banks capture 24–35% of surplus in laissez-faire1 lending relationships and
a similar percentage of the additional surplus created by loan guarantees. We study a wide range
of counterfactual policies and compare welfare under each scenario.

The intuition for why the distribution of loans is informative of banks’ market power can
be understood graphically through Figure 1, which is a density plot of loan contracts seen in
the data, with darker shades indicating greater density of loans. The SBA requires that loans

1The SBA intervenes in this market through two policy instruments: it provides loan repayment guarantees
and imposes interest rate caps. Throughout the paper, we use the term “laissez-faire” to refer to counterfactual
environments without interest rate caps or repayment guarantees. We use the term “unconstrained” to describe
environments without interest rate caps but with repayment guarantees.
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Figure 1: Size-Dependent Interest Rate Cap and the Empirical Distribution of Contracts

smaller or equal to $50,000 are capped at a rate of 6.5% above a reference rate (the “prime rate”),
while loans larger than $50,000 are limited to the prime rate plus 4.5%. Banks compete on two-
dimensional loan contracts—loan size and interest rates; hence, banks respond in both dimensions
to the interest rate cap. Consider a borrower who, in the absence of the rate cap, would have been
o�ered contract (?), which is infeasible under the rate cap. With the rate cap imposed, multiple
contracts along the rate cap could plausibly be o�ered to the borrower. Speci�cally, banks could
lower the interest rate and stay unconstrained on loan size, or they could scale back loan size
and, in exchange, charge a relatively higher interest rate. These options—marked by the dotted
arrows in the �gure—result in di�erent expected pro�ts for banks.

How a pro�t-maximizing bank responds to the size-dependent interest rate cap depends on
its market power. To see this, note the pro�t from a loan is the product between the loan size
and the pro�t margin per dollar lent. For contract (?), both adjustment margins—reducing the
interest rate to the lower cap (prime rate plus 4.5%) or reducing the loan size down to $50,000—
lead to lower pro�ts; yet, a bank with no market power will always choose to scale back loan
size to avoid lowering interest rate. This is because if the loan (?) were o�ered by a competitive
bank, then the interest rate must fully re�ect lending cost, and a rate any lower could only lead to
losses for the bank. On the other hand, a bank with su�cient market power may prefer to lower
rates to avoid decreasing loan size, that is, using smaller pro�t margins in exchange for relatively
larger lending volume under the rate cap restrictions. A bank’s conduct under the size-dependent
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interest rate cap is therefore informative of its market power.

To operationalize the strategy, we build a tractable and parsimonious model of imperfect bank
competition. A �nite number of banks compete for borrowers by o�ering loan contracts that
specify both the interest rate and the loan size. Banks are di�erentiated horizontally by borrow-
ers’ idiosyncratic taste shocks for banking services. Borrower heterogeneity gives banks market
power. The model generates a mapping from bank concentration to loan contracts and endoge-
nizes how banks respond to the SBA interventions such as the repayment guarantee and interest
rate caps. If we observe empirically how banks respond to the SBA policies, we can recover the
model parameters that govern market power and lending surplus, and use the model to conduct
counterfactual exercises.

Figure 2: Counterfactual Distribution of Contracts

To recover empirically how banks respond to the SBA policies by changing the loan contracts
o�ered, we estimate the counterfactual distribution of loan contracts that would have existed
absent the interest rate cap. We do so by using the empirical distribution of contracts strictly
below the cap to extrapolate the distribution above the cap. This procedure requires the assump-
tions that (1) if the interest rate cap does not bind for a borrower, then the same loan contract
would have been o�ered with or without the interest rate cap, and that (2) the distribution of loan
contracts is smooth, so that an econometrician can nonparametrically �t the distribution of loan
contracts strictly below the rate cap and use the information to �ll out the distribution above the
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cap.

We then compare the observed empirical distribution of loan contracts under the interest rate
cap—as in Figure 1—to a counterfactual distribution of contracts without the rate cap—as in Figure
2—to form moment conditions based on matching the missing mass in the empirical distribution
of contracts above the rate cap and the excess mass along the rate cap. We use these two mo-
ment conditions to identify two key elasticities, which jointly determine banks’ response to the
interest rate cap. The �rst elasticity governs how the surplus from bank loans varies with the
loan size, and the second elasticity captures how a bank’s market power relates to its market
share. Intuitively, the �rst elasticity is identi�ed by observing how loan contracts bunch along
the horizontal portions of the rate cap, where the interest rate is binding and banks have freedom
in choosing loan size. The second elasticity is identi�ed by observing how loan contracts bunch
along the vertical portions of the rate cap, where the loan size is binding and banks have freedom
in choosing the interest rates, which express their market power.

Using our estimates, we analyze the indirect loan guarantee program’s impact on borrower,
lender, and total surplus. We �nd that an indirect guarantee expands both borrower surplus
(BS) and lender surplus (LS) by an equal factor; for example, the 50% guarantee we observe in
the data scales both BS and LS by 2.5%. This is a relatively small percentage increase for either
party because of the low default rates observed in the data. Even a 90% guarantee raises BS and
LS by only 4.6%. From a levels perspective, in a concentrated market with only 2 symmetric
banks, only $0.64 of each dollar spent by the government reaches the borrower. The remaining
subsidy is captured either by the lender ($0.35) or becomes deadweight loss. The lenders’ capture
is alleviated only slightly, to $0.24, as the number of banks in a county increases to seven. We
compare the guarantee to other policies commonly used to address imperfect competition. A
prime plus 4% interest rate cap, for instance, causes just over 1% of loans to be rationed but boosts
average borrower surplus by 2.4% conditional on the loan being made; the net e�ect inclusive of
rationing is a 1.1% increase in BS and nearly a 6% decline in LS.

This paper contributes to three distinct branches of literature. First, our novel empirical
methodology extends the “bunching” literature in public �nance that uses kinks and notches
to identify key elasticities (Kleven (2016); Best and Kleven (2018); DeFusco and Paciorek (2017);
Cengiz, Dube, Lindner and Zipperer (2019); Antill (2020); Gelber, Jones and Sacks (2020)). Broadly
speaking, this approach uses discontinuities in economic agents’ choice set and the consequent
distortions in outcome to infer structural parameters that govern economic behaviors. Existing
papers study one-dimensional bunching (i.e., distortions in a single choice variable) that arise
from a single decision-maker’s optimization problem. Our key methodological contribution to
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this literature is twofold: we extend the bunching approach to settings where 1) each decision
maker has multiple choice variables, and 2) multiple agents strategically interact, where we study
the Nash equilibrium of such interaction. In our application, multiple banks compete with each
other by choosing both loan size and the interest rate. Policy discontinuities therefore create
distortions over a two-dimensional distribution of loan characteristics, and we uncover banks’
market power by selecting appropriate moment conditions and interpreting the empirical distri-
bution of loans o�ered by each bank as the outcome of a distorted Nash equilibrium induced by
SBA’s policy interventions.

Regulatory caps that operate in two-dimensional space are common in several distinct do-
mains. Usury laws in various states2 have imposed di�erent maximum interest rates for loans of
di�erent sizes. The Basel Committee on Banking Supervision has established maximum leverage
requirements on �nancial institutions that depend on the quality of their capital and riskiness
of their assets. Fuel e�ciency standards on new automobiles discontinuously place di�erent
minimum requirements on vehicles of di�erent sizes, potentially leading to strategic shifts in
manufactured vehicle weight (Whitefoot and Skerlos (2012)). The methodology developed in
this paper, suitably adapted, possibly o�ers new avenues for studying other markets featuring
policy-induced bunching in two dimensions.

Second, we add to the literature that studies market power in consumer credit markets and
associated policy interventions. The empirical literature has studied a host of markets, often using
reduced-form methods to estimate increased competition’s causal impact on separate outcomes,
such as risk taking (Jiang, Levine and Lin (2017)), �nancial stability (Jayaratne and Strahan (1998)),
and economic growth (Carlson et al. (2019)). We take a semi-structural approach3 that allows us
to measure the concurrent impact of bank concentration on interdependent loan terms, namely
loan size and interest rate. Modeling this joint problem provides a more holistic understanding
of how concentration and policy interventions distort loan contracts in several dimensions, and,
in turn, impact borrower surplus. We use this model to study indirect government guarantees.
Although papers have estimated the impact of guarantees on broader economic outcomes (Brown
and Earle (2017); Lelarge et al. (2010); Gale (1991)), we measure their e�ciency from a public
�nance perspective and quantify the bene�t they bring to borrowers and lenders.

Third, we provide a nuanced answer to the question of whether interest rate caps, used alone
or in conjunction with loan guarantees, help or hurt borrowers. Many countries, including the

2For example: Florida, Georgia, Kansas, Maine, and Pennsylvania. The complete listing of state usury laws is
summarized by the Conference of State Bank Supervisors as part of their Vision 2020 Initiative.

3For similar structural analyses of �nancial market power see Nelson (2018), Benetton (2018), Egan et al. (2017),
Crawford, Pavanini and Schivardi (2018), Bhattacharya, Illanes and Padi (2019), and Cuesta and Sepúlveda (2019).
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United States, place restrictions on maximum interest rates (Maimbo and Gallegos (2014)). Pol-
icy makers often argue that these caps protect borrowers from lenders who utilize their market
power to charge excessively high rates. On the other side of this debate, much of the academic lit-
erature contends that rate caps substantially limit access to credit, leading to decreased borrower
surplus (Benmelech and Moskowitz (2010); Zinman (2010); Rigbi (2013); Melzer and Schroeder
(2017); Cuesta and Sepúlveda (2019)). Our structural approach incorporates both perspectives
and evaluates the impact of hypothetical policies that vary the maximum interest rate charged
in small business lending. We �nd that a carefully chosen rate cap can provide modest bene�ts
to borrowers relative to a laissez-faire policy, especially in highly concentrated markets in which
banks charge high markups; when used in conjunction with an indirect guarantee, the interest
rate cap can also increase the portion of the subsidy that is passed through to borrowers.

We begin with a description of the empirical setting, data, and relevant policy variation in Sec-
tion 2. We provide an exposition of the model in Section 3. Section 4 discusses the identi�cation
strategy and Section 5 summarizes the results. We conduct a counterfactual policy analysis in
Section 6. Section 7 concludes.

2 Empirical Setting: SBA Express Loan Program

We analyze small business loans made through the Small Business Administration (SBA) Ex-
press lending program in 2008–2017. In this section, we describe the SBA guaranteed lending
program and provide some descriptive statistics of the data. In the next two sections, we create
a model and discuss the identi�cation strategy that allows us to estimate the model’s parameters
using the empirical policy variation.

The SBA is an independent federal government agency. It provides commercial lenders with
a partial indirect guarantee—the SBA pays the lender a percentage (50% for the Express lending
program we study) of the unrecovered principal in case of default—on loans made to participating
small businesses. Thousands of commercial lenders across the country participate in the program,
and o�er partially guaranteed SBA loans to clients who qualify. During the COVID-19 crisis,
the SBA expanded as it administered loans made through the Paycheck Protection Program. By
August 2020, year-to-date SBA loan volume was more than $500 billion, with 5.2 million loans
made through a participating network of 5,460 private lenders.

Lenders are charged a �xed fee (1%–3% of loan principal depending on the year) to the SBA
in return for a guarantee that the SBA will reimburse a certain percentage of loan principal in
the event of default. In most cases, lenders collect this guarantee fee along with other �xed
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“closing cost” fees, including legal fees, servicing fees, and �ling fees from the borrower when
the contract is signed. Loans made through the SBA guarantee program are subject to speci�c
rules and regulations, including the interest rate cap studied here.

The coverage, granularity, and policy variation contained within this dataset makes it the
ideal laboratory to study market concentration. The dataset contains contract-level information
on loan terms (interest rate, size) and repayment outcomes, borrower identity and characteristics,
and bank identity. We know the location and date of both borrowers and banks, which allows us
to generate measures of market concentration both cross-sectionally and over time. The SBA Ex-
press lending program appeals to borrowers due to its expedited approval process, which allows
borrowers to receive funds far faster than through other lending programs. This feature creates a
clearly de�ned market of banks (regional SBA lenders) for that particular borrower; furthermore,
borrowers who receive funds through the Express lending program are prohibited from “topping
up” their SBA loans with additional sources of credit. For these borrowers, the only relevant
lenders are those we observe participating in the SBA program.

Table 1 presents summary statistics for our Express loan sample, which includes 139,507 loans
made under the SBA Express program between 2008 and 2018. On average, these loans are for
$90,618, and have a maturity of 6.5 years. Interest rates for SBA Express loans can be �xed or
variable and are tied to base rates, with the maximum allowable interest rate ranging from 4.5%
to 6.5% above the base rate, depending on loan size.4 The average interest rate in our sample is
2.98% above the base rate, which is well above typical rates for corporate loans.

Although the SBA lending market is heavily regulated, the data nevertheless reveal strong
suggestive evidence of imperfect competition. We estimate the Herfendahl-Hirschman Index
(HHI) based on the dollar volume lending share (skct) of each bank k within a given county c

and year t: HHIc,t =
K∑
k=1

s2
kct

5. The HHI index is a summary statistics for market concentration

and it ranges between zero and one. Higher HHI indicates greater market concentration. The
index is equal to 1 when a single bank holds the entire market, whereas smaller values signal less
market concentration. In a market in which banks have equal market shares, the inverse of the
HHI is simply the number of banks in the market. Figure 3, which plots the distribution of the
inverse HHI across county-years, suggests that many markets are nearly monopolistic and only a
small minority feature signi�cant lender competition. The inverse HHI of a median county-year

4These base rates are the prime rate, the LIBOR, and the PEG, which can �uctuate based on market conditions.
For variable rates, the base rate used for computing interest rates is the lender’s choice, provided that the maximum
interest rate the borrower is charged still does not exceed the prime rate plus 4.5% to 6.5%.

5Our subsequent quantitative analysis is robust to using a bootstrap correction to adjust for bias as suggested by
Benkard, Yurukoglu and Zhang (2021)
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Table 1: Summary Statistics for the SBA Express Loan Program Data

Mean Std. dev. Median
Loan Size (in th.) 90.6 63.1 69.9
Interest Rate (%) 2.98 1.38 2.75
Inverse HHI 4.39 2.48 3.94
Maturity (in month) 79 35 84
% at Cap 10.89 - -
% Charge-o� (5 year) 3.23 - -
Number of Loans 139,507 - -
Number of Counties 1,806 - -

This table displays summary statistics for loans used in our estimation sample from the SBA Express Loan Program, 2008--2017. Average interest
rate is expressed in percentage points net of the prime rate, and is captured when the loan is �rst made. Loan size is expressed in dollar units.
The charge-o� rate is calculated using a dummy variable for whether a loan charged o� during its �rst �ve years. Since data are available only
through 2017, we only analyze loans created in 2012 or earlier for this statistic. % at Cap is calculated using a dummy variable that indicates
whether a loan’s terms place it directly on the SBA’s notched interest rate cap. Maturity is expressed in months.

is 3.94.6

We also observe the impact of market concentration on loan pricing. Figure 3 documents a
strong positive relationship between the average initial interest rate charged on observationally
identical loans7 within a county and the HHI of that county. This is not driven by changes in bor-
rower risk across markets—we correlate ex-post measures of default with market HHI and reject
a positive relationship. The right-hand panel plots average loan size across the same measure of
market concentration and documents a �at relationship.

Although the relationship between HHI and interest rates shown above motivates an analysis
of market power, it remains suggestive; identifying the relevant demand and supply parameters
from our model requires an exogenous shift or shock to lenders’ maximization problem. Loans
made through the SBA Express program are subject to speci�c SBA rules and regulations that
provide this identifying policy variation. Speci�cally, they face an interest rate cap that is depen-
dent on loan size—loans smaller or equal to $50,000 are capped at prime plus 6.5%, while loans
larger than 50,000 are limited to prime plus 4.5%. This “notch” in the interest rate cap imposes a
size-dependent constraint on banks’ pricing problem and generates excess loan density along the
interest rate cap, both empirically and in our model. In total, 11% of loans bunch to the interest

6Note that the DOJ merger guidelines puts the cuto� for “highly concentrated markets” at an HHI of 2500 on
a scale between 0 and 10000. By that de�nition, the median market is “highly concentrated” in this dataset, as the
inverse HHI is 3.94, translating into an HHI index of (1/3.94) × 10000 = 2538 on the DOJ scale, just above the
cuto�. We thank an anonymous referee for point this out to us.

7We control for bank brand (i.e. West America, Chase, etc), borrower business NAICS code, loan maturity, loan
size, ex-post loan performance, and time �xed e�ects.
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Figure 3: Distribution of County HHI and Observed Average Interest Rate and Loan Size by Mar-
ket Concentration

The far-left �gure plots the distribution of inverse HHI over all county-year observations in our data. We calculate an inverse Herfendahl-
Hirschman Index (HHI) based on the dollar volume lending share (sict), of each bank within a given county-year. A value of 1 means that a
single bank holds the entire market share, whereas larger values signal less market concentration. The majority of counties in a given year in
our dataset are dominated by fewer than four lenders. The center �gure plots the average interest rate charged in markets with di�ering levels
of concentration, as measured by the number of competing banks within a county. This plot includes all loans strictly below the interest rate
cap. The interest rate measure controls for loan maturity, log size, business NAICS category, time �xed e�ects, ex-post performance, and bank
brand. The plot suggests that higher interest rates are charged in more-concentrated markets. Default (i.e. charge-o�) rates do not increase
in more-concentrated markets; if anything, loans in more-concentrated markets are less costly for lenders. Therefore risk-related costs cannot
explain the downward sloping relationship between competition and interest rates. The right-hand �gure plots the average loan size in each of
these markets, which is relatively �at.

rate cap. Because SBA regulations do not allow lenders to originate multiple loans to the same
borrower at the same time, lenders cannot "piggyback" loans to take advantage of the notch. In
Section 4, we discuss how we exploit this bunching to estimate the structural parameters in our
model.

3 Model

We build a tractable model of bank competition with endogenous interest rates, loan size, and
take-up. The model is simple yet su�ciently rich to generate empirical predictions of how loan
contracts respond to policy.

3.1 Setup

Consider a market with �nite K banks and a continuum of borrowers of �nite measure. Both
parties are risk-neutral. Let k index for banks and i index for borrowers.
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Investment Technology Each borrower i has a stochastic investment technology that pro-
duces output as a function of investment size L:

fi (L) =

ziLα (succeeds) with probability pi,

δiL (fails) with probability (1− pi) .

With probability pi, the investment succeeds and generates output ziLα. The term zi is a pro-
ductivity shifter, and the parameter α captures the concavity of the production function. With
probability (1− pi) the investment fails, and only δi < 1 fraction of investment can be recovered.
Each borrower i can be summarized by its characteristic (zi, δi, pi).

Loan Contracts Borrowers may obtain investments from bank loans. A loan contract is a
duplet of interest rate and loan size, (r, L). If the contract (r, L) o�ered by bank k is accepted by
borrower i, it generates contractual value vi (r, L) to borrower i and expected pro�t πik (r, L) for
bank k:

vi (r, L) ≡ pi(ziL
α − (1 + r)L) (1)

πik (r, L) ≡ (pi(1 + r) + (1− pi)δi − ci)L (2)

Note that loan contracts are similarly to debt: the lender captures the investment payo� up to the
speci�ed repayment (1 + r)L, and the borrower is the residual claimant. When the project fails,
the borrower gets paid zero and the bank gets paid δiL. When the project succeeds, borrower gets
paid ziLα − (1 + r)L and the bank gets paid (1 + r)L. The term ci represents the opportunity
cost of lending to borrower i.

The expected utility that borrower i obtains from selecting contract (r, L) from bank k is

uik (r, L) ≡ ξik × vi (r, L) . (3)

The term ξik ≥ 0 is a random taste shock that is i.i.d. across borrowers and banks and independent
from borrower and bank individual characteristics. We refer to vi (r, L) as the contractual value,
and uik (r, L) as the expected utility, of loan (r, L) to borrower i. The taste shock ξik represents
idiosyncratic heterogeneity, such as borrowers’ di�erential preferences for the services provided
by di�erentiated banks.

Bank Competition Banks k = 1, . . . , K compete for borrowers by simultaneously o�ering
contracts. Banks face cost ci when they lend and di�er horizontally, due to idiosyncratic taste
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shocks ξik. Each bank k o�ers one contract (rik, Lik) to each borrower i.8 We assume each bor-
rower can always walk away from the investment opportunity if loan terms are too unattractive;
that is, every borrower has an outside option of zero utility. Given the set of contracts o�ered
by competing banks, borrowers accept the contract that generates the highest and non-negative
expected utility. The probability that borrower i chooses the contract o�ered by bank k is

qik ≡ Pr (i chooses k) = Pr
(
uik ≥ max

{
0,max

k′
uik′
})

. (4)

The randomness in the borrower’s choice of contract originates from idiosyncratic taste shocks.
Note that qik increases in the contractual utility vik o�ered by bank k and decreases in vik′ for all
k′ 6= k. When competing for borrowers, banks observe the borrower’s production technology
fi(L) but do not observe the idiosyncratic shocks. Each bank k o�ers the contract that maximizes
expected pro�t:

(r∗ik, L
∗
ik) ≡ arg max

rik,Lik
qik × πik. (5)

Distribution of Taste Shock For tractability, we assume the log of idiosyncratic taste shocks
ln ξik are drawn from Type-I extreme value (Gumbel) distribution, with CDF G (ξ;σ) = e−γe

−σξ ,
where γ is a normalizing constant. This distributional assumption enables us to analytically solve
for equilibrium loan contracts as a function of the market structure.

σ > 0 is the key parameter that captures the substitutability of loans across banks and relates
inversely to the variance of borrowers’ idiosyncratic taste shocks. Banks are more substitutable
when σ is high. As we show below, in the limit as σ → ∞, banks become perfect substitutes.
Conversely, as σ → 0, the banking choice becomes entirely idiosyncratic and is driven by ξik;
consequently, the choice probability for any given bank becomes independent of contractual util-
ities {vik′}.

Under the distributional assumption, the choice probability for any given bank becomes

qik

(
{vik′}Kk′=1

)
=

max {0, vσik}∑K
k′=1 max {0, vσik′}

. (6)

Let εik ≡ ∂ ln qik
/
∂ ln vik ≥ 0 denote the elasticity of the choice probability qik (that borrower i

chooses bank k) with respect to the contractual utility vik, holding contracts o�ered by all other
banks constant. We refer to εik simply as the “choice elasticity”, and under the distributional

8Because banks observe borrower’s productivity zi, recovery rate δi, and probability of success pi, it is without
loss of generality to specify that banks o�er a single (optimal) contract.
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assumption,
εik = σ (1− qik) . (7)

Ceteris paribus, the choice elasticity εik is greater when banks are more substitutable (higher
σ). We choose the normalizing constant γ = (Γ (1− 1/σ)σK)

−1 to be a function of the market
competition K in order to neutralize the love-of-variety e�ect, and Γ is the Gamma function.
This normalization implies that the expected utility of borrower i is

EUi ≡ E
[
max
k
ξikvik

]
=

(
1

K

K∑
k=1

max {0, vσik}

) 1
σ

,

which has the property that when all loans contracts are identical (vik = vi∀k), then EUi = vi.

De�nition 1. The unconstrained equilibrium is the set of contracts {(r∗ik, L∗ik)} that solves the
pro�t maximization problem (5) for each bank k and each borrower i.

We use the term “unconstrained” to refer to equilibrium contracts in a policy environment
featuring no interest rate caps. We reserve the term “laissez-faire” for environments that also
feature no government guarantee on loans.

Default happens in the model when the output is below the required loan repayment (fi (L) <

(1 + r)L). Importantly, default is always involuntary: the borrower repays as much as the output
allows, and there is no strategic decision regarding default. Another feature of the model is that
default generates no deadweight loss and simply represents a transfer between the borrower and
the lender under the contingency that output is low. This can be seen by noting that the sum
of bank pro�t and the contractual value to the borrower is a function of only loan size and is
invariant to the interest rate:

vi (r, L) + πik (r, L) = Ei [f (L)]− ciL.

This simpli�cation enables us to abstract away from ine�cient default and focus on market power
as the only source of potential ine�ciency in the model.

Each bank’s pro�t maximization problem can be written as

max
r,L

[pi (1 + r) + (1− pi) δi − ci]L︸ ︷︷ ︸
expected pro�t conditioninal

on contract being accepted

× max {0, vσik}∑K
k′=1 max {0, vσik′}︸ ︷︷ ︸

choice probability

s.t. vik = pi (ziL
α − (1 + r)L) .

(8)
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We de�ne bank k’s pro�t margin as

µik (r, L) ≡ pi (1 + r)

ci − (1− pi)δi
− 1, (9)

which is the ratio between expected bank pro�t and e�ective marginal cost, conditioning on the
loan being accepted.

Proposition 1. The unconstrained equilibrium has the following features.

1. Loan terms satisfy

Lik =

(
αpizi

ci − (1− pi)δi

) 1
1−α

, (10)

µik =
1− α

α (1 + σ (1− 1/K))
. (11)

The interest rate can be recovered from the pro�t margin µik according to equation (9): (i.e.,
1 + rik = (1 + µik)

ci−(1−pi)δi
pi

). Contractual value of every loan contract is positive: vik > 0

for all i, k.

2. The Her�ndahl Index (HHI) in the lending market is 1/K . The pro�t margin in the market
can be written as

µ ≈ 1− α
α (1 + σ)

+
(1− α)σ

α (1 + σ)2 ×HHI,

where the approximation error is o (1/K), i.e., second-order in the HHI.

The �rst part of Proposition 1 characterizes equilibrium loan terms. Equation (10) implies
that equilibrium loan size is e�cient as it equals the loan size that maximizes total surplus:
maxL piziL

α + (1−pi)δiL− ciL. To understand this, note that, because defaults happen only in-
voluntarily, interest payments serve as a linear transfer from each borrower to the lender. Hence,
the two loan characteristics serve distinct roles in equilibrium: loan size is always chosen to max-
imizes total surplus, whereas interest rate pins down the division of surplus between the lender
and the borrower.

Equation (11) characterizes the equilibrium pro�t margin and thus the interest rate. To under-
stand this, note the total surplus of each loan in the unconstrained equilibrium, maxL piziL

α −
(ci − (1− pi)δi)L, depends on the concavity of the borrower’s production technology, α. Ceteris
paribus, when the production technology is more concave—lower α—investment generates more
surplus per unit cost of lending. The pro�t margin is therefore decreasing in α. The remaining
term 1

1+σ(1−1/K)
captures the fraction of surplus accrued to the bank. The bank’s share of surplus
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relates to its market power; according to equation (7), the term σ (1− 1/K) in the numerator
is exactly equal to the choice elasticity εik of borrower i with respect to the contractual value
o�ered by bank k. Banks have higher pro�t margins when they are less substitutable (lower σ)
or have greater market shares (fewer banks K).

The second part of Proposition 1 shows that in equilibrium, the average pro�t margin in a given
market is approximately linear in the HHI index for bank loans. HHI is inversely proportional to
the number of banks operating in the market.

In summary, the proposition implies that, holding borrower characteristics constant, pro�t
margins and interest rates are higher in more-concentrated markets, but market concentration
should not have predictive power over loan size. That across U.S. counties, interest rates are
increasing in HHI but loan size is �at, as shown in Figure 3, serves as an external validation of the
model. The proposition also implies that pro�t margins and interest rates are higher when banks
are less substitutable (lower σ). These results are intuitive: when there are fewer competing banks
or when banks are less substitutable, demand for loans from a speci�c bank should become more
inelastic, as a marginal increase in the interest rate—and the consequent reduction in contractual
utility—should lead to a smaller out�ow of potential borrowers. Consequently, competition is
weaker, and banks o�er loan terms that are less favorable to borrowers.

3.2 Banks’ Response to Policy Interventions

We now analyze how banks respond to constraints imposed by government policies in the
contract space. We conduct this analysis for two reasons. First, when we estimate the model in
the data, our identi�cation strategy exploits banks’ responses to constraints in the contract space
in order to recover model primitives. Second, interest rate caps are common policy tools; this
section guides our analysis of these policies as we perform counterfactuals in Section 7.

We �rst analyze how banks respond to simple, �at constraints on interest rate and loan size.
We then analyze how banks respond to interest rate caps that vary with loan size.

InterestRate andLoan SizeAre Strategic Substitutes Because contracts are two-dimensional,
banks have two levers to extract pro�t from each borrower: the interest rate and the loan size. In
equilibrium, a bank sets contractual terms to balance the trade-o� between (1) extracting pro�ts
πik per borrower and (2) leaving surplus to the borrower to raise the probability of loan take-up
qik. Imposing any binding constraints on one of the choice variables r and L will cause banks
to respond over the other choice variable as well. More importantly, an increase in either the
interest rate or the loan size always leads to higher pro�ts πik per borrower and lower take-up
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qik; hence, the two choice variables are strategic substitutes, meaning imposing a binding interest
rate cap leads banks to over lend, as loan size becomes larger than what is e�cient; likewise, im-
posing a binding loan size cap leads banks to charge higher interest rates than what would have
prevailed absent the constraints.

Figure 4: Contour plot of bank’s pro�t as a function of contractual terms

Laissez-faire contract

Contract under the 
interest rate cap

Interest rate cap

To demonstrate this, Figure 4 shows a contour plot of a bank’s isopro�t curve as a function of
the two choice variables r and L, for a given borrower i. Darker shades indicate higher pro�ts.
Because banks’ maximization problem is concave, the pro�t function is single peaked: the pink
dot indicates the contract that would be o�ered if no policy constraints were imposed. Next, if
an interest rate cap (dotted horizontal line) is imposed so that the contract in pink is no longer
feasible, which contract does the bank o�er? The bank would choose, among all feasible contracts,
the one with the highest pro�t—the darkest spot—in the constrained set. Because the decline in
pro�ts is least steep in the direction of higher L, the bank conforms to the interest rate cap and
sets a larger loan size, as indicated by the green dot.9 Likewise, a binding loan size cap induces
the bank to raise the interest rate.

We now formalize these predictions and provide analytic solutions to the contractual response
9Note that the theory does not say that the bank should o�er more than what the borrower asks for on the loan

application; instead, the theory predicts that the bank approves and o�ers a greater loan under a binding interest
rate cap than it otherwise would in the absence of the cap.
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under various policy constraints. We drop the subscript k whenever it is unambiguous.

Simple Interest Rate Caps and Loan Size Restrictions

Proposition 2. Consider a bank’s pro�t maximization problem (8) under additional constraints.
Let (r∗i , L

∗
i ) represent the unconstrained contract.

1. Suppose the bank faces an interest rate cap ri ≤ r̄.
When the rate cap is too low (1 + r̄ < α+ασ(1−1/K)

1+ασ(1−1/K)
(1 + r∗i )), the loan will be rationed.

Otherwise, the equilibrium contract is

(ri, Li) =

(
min {r̄, r∗i } , L∗i ×max

{
1,

(
1 + r∗i
1 + r̄

) 1
1−α
})

.

2. Suppose the bank faces a loan size constraint Li ≤ L̄. The equilibrium contract is

(ri, Li) =

(
max

{
(1 + r∗i )

(L∗i /L̄)1−α + ασ(1− 1/K)

1 + ασ(1− 1/K)
− 1, r∗i

}
,min

{
L̄, L∗i

})
.

Proof: See Appendix A.

This formulation allows us to express the constrained contract (ri, Li) in terms of the uncon-
strained contract (r∗i , L

∗
i ) and model parameters α, σ, and K , without referencing the borrower-

speci�c parameters pi, δi, zi, and ci. This property is the result of the fact that the unconstrained
loan terms (r∗i , L

∗
i ) incorporate the relevant information from these parameters. In terms of com-

parative statics, note that holding constant the unconstrained lending rate r∗i and the rate cap r̄,
a higher α—meaning a less concave production technology—leads to a greater proportional dis-
tortion in lending size.

Loan Size–Dependent Interest Rate Caps Now consider size-dependent interest rate caps,
that is., an interest ceiling r̄H for loans sizes below L̄ and ceiling r̄L < r̄H for loan sizes above L̄.
We continue to use (r∗i , L

∗
i ) to represent the unconstrained contract and use (ri, Li) to represent

the equilibrium contract under the policy.

Because the two choice variables r andL are strategic substitutes, we can intuitively categorize
each bank’s response to the size-dependent interest rate cap into three scenarios, depending on
borrower i’s characteristics and the policy environment

(
r̄L, r̄H , L̄

)
.

A. Unconstrained contracts (r∗i , L
∗
i ) strictly below the caps are una�ected by the policy.
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B. Unconstrained contract with loan size below the notch (L∗i < L̄) and the high interest
rate cap binds (r∗i > r̄H ): equilibrium loan terms have two possibilities other than being
rationed, as indicated in the �gure below.

(a) Li ≤ L̄ and ri = r̄H ;

(b) Li > L̄ and ri = r̄L.
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Loan Size

Unconstrained contract
Possible equilibrium contracts 
given the interest rate cap
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C. Unconstrained contracts with loan size above the notch (L∗i ≥ L̄) and the low interest
rate cap binds (r∗i > r̄L): equilibrium loan terms have two possibilities other than being
rationed.

(a) Li > L̄ and ri = r̄L;

(b) Li = L̄ and ri ∈ (r̄L, r̄H ].
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Unconstrained contract
Possible equilibrium contracts 
given the interest rate cap

In scenario B. and C., which of the two possible equilibrium contract will materialize depends on
the model parameters, as characterized formally in the next proposition. Intuitively, banks with
lower market power (higher σ or K) are less likely to reduce the interest rate—because the pro�t
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margin is already low in equilibrium—and when the borrower’s loan demand is more concave
(lower α), banks have lower incentive to distort the loan size.

Proposition 3. Suppose the unconstrained contract (r∗i , L
∗
i ) is infeasible under the policy environ-

ment with an size-dependent interest rate cap
(
r̄L, r̄H , L̄

)
. Let

(
rLi , L

L
i

)
≡
(
r̄Li , L

∗
i

(
1+r∗i
1+r̄L

) 1
1−α
)
,

and let

(
rHi , L

H
i

)
≡


(
r̄H ,min

{
L̄, L∗i

(
1+r∗i
1+r̄H

) 1
1−α
})

if L∗i < L̄(
min

{
r̄H , (1 + r∗i )

(L∗i /L̄)1−α+ασ(1− 1
K

)

1+ασ(1− 1
K

)
− 1
}
, L̄
)

if L∗i ≥ L̄.

The loan will be rationed if 1 + r̄H < α+ασ(1−1/K)
1+ασ(1−1/K)

(1 + r∗i ). Otherwise, the equilibrium contract is(
rHi , L

H
i

)
if

LHi (pi(1 + rHi − δi)− (ci− δi))qik(rHi , LHi ) ≥ LLi
(
pi
(
1 + rLi − δi

)
− (ci − δi)

)
qik(r

L
i , L

L
i ) (12)

and is
(
rLi , L

L
i

)
if the inequality (12) fails to hold.

For borrowers whose unconstrained contract is infeasible under the interest rate ceilings, the
bank o�ers either smaller loans with higher interest rates,

(
rHi , L

H
i

)
, or larger loans with lower

interest rates,
(
rLi , L

L
i

)
. The inequality (12) states that a bank selects the option that is most

pro�table. What that option is will depend on the borrower choice probability, qik, which in turn
depends on the contracts o�ered by all banks in the market. We solve for a symmetric Nash
equilibrium in which all banks choose between o�ering

(
rLi , L

L
i

)
and

(
rHi , L

H
i

)
. The proof for

Proposition 3 is given in Appendix A.

Indirect Loan Guarantees With a λ percent indirect loan guarantee, the SBA promises to
pay the lender λ percent of the unpaid principle of the loan if the borrower defaults. The lender’s
pro�t maximization problem now becomes:

max
r,L

[pi (1 + r) + (1− pi) (δi + λ(1− δi))− ci]L · qik
(
{vik′}Kk′=1

)
(13)

We can de�ne the recovery rate inclusive of the indirect guarantee as δGi = δi + λ(1− δi). δGi
can be interpreted as the fraction of principal that lenders recover either from the borrower or
from the SBA in the case of default. Making this substitution in (13) brings us back to (8); thus
replacing δi with δGi preserves the validity of all equations in the previous sections.
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4 Two-Dimensional Bunching: Methodology

We use the empirical distribution of contractual terms under a size–dependent interest rate
cap policy to identify model parameters. Our identi�cation strategy builds on and extends the
“bunching” literature that uses kinks and notches to identify key elasticities (Best and Kleven
(2018); Kleven (2016)). Broadly speaking, this approach exploits discontinuities in economic
agents’ choice sets and the consequent distortions in the equilibrium outcome distribution to
infer structural parameters that govern economic behaviors. The bunching approach requires
two steps: 1) recover a counterfactual distribution H0 (·) of equilibrium outcome absent the pol-
icy discontinuity; 2) use the di�erence between the counterfactual distribution and the observed,
equilibrium distribution HP (·) under policy to infer parameters.

Our methodological contribution advances the bunching approach to a setting with a multi-
dimensional behavioral response. In our setting, loan contracts are two-dimensional, involving
both the interest rate and the loan size. As we have shown, imposing policy constraints on either
choice variable would distort the loan contract on the other variable. The policy variation we
exploit therefore naturally calls for a two-dimensional bunching approach to inference, and in
this section we outline how we can identify the two key model parameters—σ and α—from the
empirically observed distribution of loan contracts.

First, we recover the two-dimensional joint distribution H0 (r, L) of unconstrained contracts
from the distribution of contracts HP (r, L) observed in the data. We start from the subsample S
of loans with interest rates strictly below the cap, and we recover H0 (r, L) from the conditional
distribution of loans HP (r, L|S). This strategy is motivated by the fact that if it were optimal
for banks to o�er a contract in set S when unconstrained, then such a contract is still optimal
and available even in the presence of the policy cap. Moreover, because each bank’s pro�t max-
imization problem is concave, the policy cap does not move any unconstrained contract strictly
outside of the set S to the interior region strictly below the policy cap. Therefore, the distribu-
tion of contracts in set S under the policy cap coincides with the conditional distribution in an
unconstrained environment: HP (r, L|S) = H0 (r, L|S). Under the assumption that H0 (·) is
“smooth” over its domain—a standard assumption in the bunching literature10—we then recover
H0 (·) over the entire two-dimensional domain by extrapolating from the conditional distribution
HP (r, L|S). Section 5.1 provides a detailed discussion of the statistical procedure that recovers

10The bunching literature (e.g., see Kleven (2016); Best and Kleven (2018)) typically state the assumption on the
distribution to be estimated—in this case, H0 (r, L)—as being “smooth” over the unobservable region of support,
controlling for potential spikes over integer values. The technical assumption for “smoothness” is for H0 (r, L) to
be analytic, so that econometricians can recover the functional form over the unobserved region using observable
information on the distribution function that is non-local to the unobserved region.
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H0 (r, L) from HP (r, L|S).

Once we have the counterfactual and empirical distribution of contracts H0 and HP , we then
take the di�erence between the two and de�ne the policy-induced distortion in the distribution
of contracts as D ≡ HP −H0, which we simply refer to as “distortion”. Conceptually, we could
do this market by market generating a collection of D’s across markets. As an example, the
policy-induced distortion D for a hypothetical market is visualized in Figure 5. There is “excess
mass” in the green region—i.e. the observed joint distribution has more mass than the predicted
counterfactual distribution. The excess mass is along the interest rate cap, where banks have
“bunched” loans that would have otherwise existed above the cap. There is “missing mass” in the
pink regions, where the observed distribution has less mass than the predicted counterfactual
distribution. Because banks are not allowed to make loans above the cap, this missing mass is
above the cap.

Identi�cation We now discuss how to identify model parameters α and σ based on the col-
lection of distortions D across markets. We form moment conditions guided by Proposition 3,
which how loans would be distorted under a size–dependent interest rate cap, and, importantly,
where they would be relocated, as functions of α and σ. In other words, the proposition explains
how the distortions we observe in D relate to the model parameters, directly linking the observ-
ables, L, r, and K, to the structural parameters. As we show below, this approach enables us to
be completely agnostic about borrower heterogeneity: we allow for an arbitrary distribution of
borrower characteristics (zi, pi, δi), and the distribution could vary arbitrarily across markets.

Figure 5: Excess and Missing Mass Regions Used for Identi�cation
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r̄H
A

B

C

D

Speci�cally, Proposition 3 predicts that loans in the areas of missing mass, when not rationed,
should bunch along the rate cap in one of four ways, as illustrated in Figure 5:
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1. Loans in region C should bunch along the interior of the higher rate cap (ri = r̄H , Li < L̄).

2. Loans in region A should bunch along the kink of the notch (ri = r̄H , Li = L̄).

3. Loans in region B should bunch along the interior of the notch (ri ∈
(
r̄L, r̄H

)
, Li = L̄).

4. Loans in region D should bunch along the lower rate cap (ri = r̄L, Li ≥ L̄).

The shape of each of the regions are determined by the two key model elasticities, α and σ. The
�rst elasticity α governs how the surplus from bank loans varies with the loan size. A lower α
implies a greater degree of diminishing returns, and thus distortions on loan size is more costly.
The second elasticity σ captures banks’ horizontal di�erentiation and thus their market power
given the number of competing banks K . Under a higher α, banks are more substitutable, have
lower market power, and are less willing to reduce interest rates.

Moment Conditions We use two moment conditions per market for identi�cation. The �rst
moment condition draws the boundary of region A and equates the missing mass there to the
excess mass at the point

(
r̄H , L̄

)
. The second moment condition draws the boundary of region

B and equates the missing mass there to the excess mass along the interior of the notch (ri ∈(
r̄L, r̄H

)
, Li = L̄). These boundaries vary continuously with the two elasticities α and σ. These

parameters are then empirically pinned down when the boundaries are chosen such that the
missing mass in regions A and B matches exactly the excess mass in the corresponding part of
the notch.

First, let rH = (1 + r∗)
(L
∗
L )

1−α
+ασ(1−1/K)

1+ασ(1−1/K)
− 1, and let LL = L∗

(
1+r̄L

1+r∗

) 1
α−1 . Using Proposition

3, we can formally de�ne the unconstrained equilibrium contracts (r∗, L∗) ∈ BK that bunch into
the interior of the notch under the size-dependent interest rate cap as BK ≡ S1

K ∩S2
K , where S1

K

and S2
K are de�ned as:

S1
K ≡

{
(r, L)

∣∣∣∣∣L̄
(

(1 + rH − (1 + r)
α+ ασ(1− 1/K)

1 + ασ (1− 1/K)

)
qik(rH , L̄)

> LL
(

(1 + r̄L)− (1 + r) · α+ ασ(1− 1/K)

1 + ασ (1− 1/K)

)
· qik(r̄L, LL)

}
,

S2
K ≡

{
(r, L)

∣∣∣∣∣rH < r̄H

}
.

Intuitively, S1
K selects contracts that scale back to L̄ (instead of over-lending at an interest rate

r̄L), and S2
K selects contracts with interest rates lower than r̄H under the policy intervention.
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The borrower choice probabilities qik depend on the contracts o�ered by all banks in the market.
In Appendix A, we �nd a symmetric (mixed-strategy) Nash equilibrium in which all banks o�er
the same contracts with the same probabilities. That the excess mass in the interior of the notch
is equal to the missing mass in the region de�ned by BK is our �rst moment condition for all
markets with K banks.

To formalize the second moment condition, let

R1
K ≡

{
(r, L)

∣∣∣∣∣L ≥ L̄, rH ≥ r̄H , r > r̄L

}
, R2

K ≡

{
(r, L)

∣∣∣∣∣r ≥ r̄H , LL ≥ L̄ ≥ L
}
,

R3
K ≡

{
(r, L)

∣∣∣∣∣L̄
(

1 + r̄H − (1 + r)
α+ ασ(1− 1/K)

1 + ασ (1− 1/K)

)
qik(r̄H , L̄)

≥ LL
(

1 + r̄L − (1 + r)
α+ ασ(1− 1/K)

1 + ασ (1− 1/K)

)
qik(r̄L, LL)

}
,

R4
K ≡

{
(r, L)

∣∣∣∣∣1 + r̄H

1 + r
≥ α+ ασ(1− 1/K)

1 + ασ(1− 1/K)

}
.

Here, R1
K identi�es contracts right of the notch that move to the kink

(
r̄H , L̄

)
as opposed to

the interior of the notch. R2
K �nds contracts left of the notch that move to the kink

(
r̄H , L̄

)
as

opposed to along the interior of the upper cap. R3
K picks out contracts that scale back to L̄ (instead

of over-lending at an interest rate r̄L). Finally, R4
K speci�es the loans that are not rationed due to

the rate cap. The intersectionAK ≡ (R1
K∪R2

K)∩R3
K∩R4

K contains the unconstrained contracts
that should bunch to the kink

(
r̄H , L̄

)
.

For each market structure K , we generate the following moment condition:
∫∫

(r,L)∈BK
dD (r, L) +

∫∫
(r,L)∈SK

dD (r, L) = 0

D
(
r̄H , L̄

)
+
∫∫

(r,L)∈AK
dD (r, L) = 0.

The equations de�ning SK andRK show how the borders of the missing mass regions depend
on both the parameters of the model and the level of market concentration. Figure A.5 demon-
strates how the missing mass region’s boundaries vary with the parameters σ and α, and the
number of banks in the market, K . The empirical shape and size of the missing mass regions
allow us to identify and estimate the model parameters, both within and across markets with dif-
ferent concentrations. In general, a larger missing mass region is associated with higher values of
σ and α. Intuitively, this is because for a given loan size, higher values of σ and α are associated
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with the bank being able to charge a lower mark-up in the unconstrained environment. Under
the notched rate cap, this thin pro�t margin forces banks to “scale back” (i.e. decrease L and
potentially increase r) a larger portion of loans rather than pushing them out to the lower cap
(hence increasing L and decreasing r). A similar phenomenon occurs as K increases—with more
banks in the market, banks’ pro�t margins are smaller. This means more loans are forced to scale
back under the rate cap, creating a larger missing mass region. Within a given market, varying
α and σ will not only increase the size of the missing mass region, but also change its shape.
Therefore, identi�cation of the parameters comes from both the absolute area and the shape of
the missing mass region.

The parameters α and σ change the size of the missing mass region over which we integrate
during estimation. We search for the values of α and σ that minimize the di�erence in excess
and missing mass for each moment and market. Intuitively, the two moment conditions for a
single market are su�cient to recover α and the choice elasticity of that market. Additionally, we
exploit cross-market variation to recover σ, which governs how the choice elasticity varies with
market structure. The model is therefore over identi�ed.

5 Estimation and Results

Here we describe the empirical procedure for estimating the counterfactual distribution and
the model parameters using the set of indi�erence conditions that equate the excess and missing
mass in our two-dimensional setting.

5.1 Estimating the Counterfactual Contract Distribution

Estimating the excess mass requires that we compare the observed distribution of contracts
HP (L, r) to the counterfactual distribution H0 (L, r) that would exist in the absence of a notch.
Therefore, in this section our goal is to generate a reasonable estimate of the joint distribution of
loan size and interest rates in a hypothetical world in which the Small Business Administration
did not impose a size-dependent interest rate cap. This is a nontrivial problem as we only observe
loans created in an environment subject to this rate cap.

Following the argument in Section 4, we restrict our sample to the subset of contracts that
have interest rates below the interest rate cap. Within this subsample, we estimate the joint
distribution of loan size and interest rate, allowing for a �exible correlation structure between
the two variables.

The distribution of both interest rates and loan size features pronounced “round number

24



bunching” at familiar basis point or dollar multiples, which generates empirical challenges. This
forces us to take a more nonparametric approach: we �rst �t a �exible polynomial with round
number dummies to the marginal distribution of r, accounting for the fact that we observe
only the truncated distribution of contracts with interest rates strictly below the lower rate cap
(r|r < r̄ ≡ 4.5%). We then estimate the distribution of loan size conditional on interest rate.
Using the estimated parameters, we predict the distribution of contracts,

(
r̂, L̂
)

, for r ≥ r̄.

Below is a more detailed description of the estimation procedure, which has three steps:

1. Derive an estimate for the marginal probability function H0
r = P (R = r).

2. Estimate the conditional probability function H0
L|r = P (L = l|R = r).

3. Combine the output from steps 1 and 2 to get the joint distributionH0 = P (L = l, R = r).

Step 1. Estimate Marginal Density Function, P (R = r)

We initially focus on estimating the marginal distribution of interest rates P (R = r) using
the observed set of contracts with interest rates strictly below the rate cap P (R < r̄). The key
empirical assumption behind the strategy is that these contracts strictly below the lower rate cap
r̄ ≡ 4.5% were not altered by the interest rate cap—which holds true if our model mirrors the
true data-generating process—and thus an identical set of loan contracts would have existed in
the counterfactual world without the rate caps.

The distribution of observed contracts displays distinct round number bunching at predictable
intervals and is also truncated at the notch. Figure A.3 in the appendix contains the histogram
and CDF of observed loans. In both �gures, we see signi�cant spikes occurring at integer interest
rates, as well as at multiples of 50 basis points and 25 basis points.

Using the observed data, we discretize r into bins of 1 basis point and �t the following model
using nonlinear least squares:

P (R ≤ r) =
eη(r)

1 + eη(r)

where η (r) is a polynomial in r with integer dummies:

η(r) = P (r) + δ1br/0.01c+ δ2br/0.005c+ δ3br/0.0025c

Here, P (r) is a polynomial of r with a �nite degree, b·c is the �oor function, and the terms δ1,
δ2, and δ3 measure the discontinuous jump in the linear predictor when r reaches, respectively, a
round integer interest rate (δ1), a multiple of 50 basis points (δ2), and a multiple of 25 basis points
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(δ3). We vary the polynomial’s degree over di�erent speci�cations. Using the estimated coe�-
cients, we then recover the CDF P (R ≤ r) for r ≥ r̄ based on the relationship η (r) estimated
using r < r̄. Figure A.4 in the appendix overlays the estimated CDF from the model with the
unconditional CDF from the data.

Step 2. Estimate Conditional Density Function P (L = l|R = r)

In this next step, we estimate the conditional density of loan size given interest rates, P (L =

l|R = r), using the sample P (R < r̄). We again discretize L into bins, each $2,500 wide, and �t

P (L ≤ l|R = r) =
eχ(l,r)

1 + eχ(l,r)
,

where χ (l, r) is a polynomial in r and log l with integer dummies:11

χ (l, r) = P (r, log l) + δ1bl/5c+ δ2bl/10c+ δ3bl/25c+ δ4bl/50c+ δ5br/100c

where l is the loan size in thousands; P (r, log l) is a polynomial with �nite degrees in r, log l,
and their interactions; and δ’s captures the discrete change in the CDF around prominent integer
levels of loan size. We then follow the estimation procedure described in step one, using NLLS
to estimate the parameters of χ (l, r) from the sample of loans we observe with r < r̄ and then
employ the estimated χ function to recover the CDF over the entire support of (l, r).

Step 3. Create H0(L, r)

We create the joint predicted distribution H0(L, r) = P (L = l, R = r) by multiplying the
marginal and conditional distributions estimated in steps 1 and 2. To ensure H0(L, r) is well
behaved, we rescale the distribution to ensure that the mass of loans strictly below the rate cap
integrates to the same number under H0 and under HP conditional on every r or on every l.

Figure 6 plots the observed loan distribution and the predicted counterfactual distribution,
pooling over all markets and loans. In the observed distribution, the excess mass at the threshold,
$50,000, and along the interest rate cap is pronounced. The predicted counterfactual distribution
spreads this excess mass throughout the region where loan contracts would have been located in
the absence of the discontinuity, both above and to the right of the threshold.

11While the maximum loan size for the Express program is $350,000, we only include loans between $25,000 and
$300,000 in our estimation procedure, because some irregular endpoint “bunching” occurs at $350,000, that is distinct
from the rest of the distribution. Similarly, a collateral threshold occurs at $25,000, which also generates idiosyncratic
bunching.
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Figure 6: Observed and Counterfactual Distribution of Loan Contracts (Averaged Across Markets)

This �gure plots the observed and counterfactual densities, pooling over all markets and loans. Here the excess mass (observed - counterfactual)
at the threshold, $50,000, is pronounced and equal to 3 percentage points. The counterfactual distribution also displays some missing mass to
the right of the threshold, where loan contracts would have been located in the absence of the discontinuity. In the baseline speci�cation, the
counterfactual distribution is constructed using �rst degree polynomials.

Validation of the EstimationProcedure in SimulatedEnvironments Recovering the coun-
terfactual distribution in our analysis has two key di�erences when compared with traditional
bunching estimators. First, the SBA Express Loan Program’s interest rate cap is a non-trivial
function of loan size. Both empirically and theoretically, this leads to bunching mass occurring
along a two dimensional notch, rather than a one dimensional space as in the current bunching
literature. Second, because bunching in our setting is caused by a binding policy ceiling, rather
than a policy-induced kink or notch in an agent’s budget set, we do not observe any probabil-
ity mass on the “other side” of our notch. This causes us to need to use extrapolation, rather
than interpolation, to uncover the counterfactual distribution of loan contracts in the absence of
a rate cap. These two challenges raise questions about whether our approach can successfully
recover the counterfactual distribution of loan contracts in the absence of an interest rate cap. In
Appendix section D, we show via simulations that we can successfully estimate the counterfac-
tual distribution under di�erent data generating processes of the contract distribution, including
when (r, L) follow independent uniform distributions and when (r, L) follow a joint log-normal
distributions with the covariance matching the observed loans in our real data.

5.2 Estimating Parameters

For each market k we calculate the observed empirical joint probability density, ĤP
k over a

two-dimensional grid, with grid points de�ned by the intervals L = [25, 000 : 2, 500 : 300, 000]
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and r = [0 : .0001 : .8]. The visible bunching in the loan size distribution at round number
multiples requires that we use this discrete, rather than a continuous, approach. Using the method
described above, we predict the counterfactual density, Ĥ0

k , over this same domain and calculate
the di�erence between the two as D̂k = ĤP

k − Ĥ0
k .

Using D̂k, we calculate the empirical analogues to our theoretical moment conditions. Our
estimation routine then chooses (α̂,σ̂) = arg minR(α, σ), where

R(α, σ) =
∑
k

[(
Êk,1 + M̂k,1

)2

+
(
Êk,2 + M̂k,2

)2
]
,

where Êk,i is the excess mass for the i-th moment condition in market k and M̂k,i is the corre-
sponding missing mass. The routine uses a Nelder-Mead algorithm to �nd the minimizers, α̂ and
σ̂, of the objective function.12

To generate standard errors for these estimates, we resample the rows of our original dataset
with replacement B = 100 times. For each of our B simulated datasets, we repeat the procedure
outlined in this section to generate new estimates, {α∗b , σ∗b}Bb=1 . We then compute the sample
standard errors of our bootstrapped estimates.

5.3 Implementation and Results

Our main speci�cation splits the data into three equally sized groups based on inverse HHI,
denoted by K. The most concentrated market group has an average K of 2.15, while the least
concentrated group has an average K of 7.08. In other speci�cations we vary the number of
market concentration bins created.

We construct Ĥ0
k , and D̂k for k = 1 through 3 using the procedure outlined in Section 5.1.

Figure 7 plots the distribution of D̂k across loan size and interest rate for the various groups;
pronounced excess mass (in green) occurs along the border of the interest rate cap, where uncon-
strained contracts with higher interest rates have been forced to bunch. Missing mass (in pink) is
concentrated above the cap and to the right of the notch. Visually, the missing mass shifts down
as K increases, implying that markups are lower in more-competitive markets.

12In principle, some loans in the missing mass region may be rationed. Hence, for given elasticities (α, σ), our
procedure should �rst subtract the mass of rationed loans from the missing mass—following Proposition 3, a loan is
rationed i� 1 + r̄H < α+ασ(1−1/K)

1+ασ(1−1/K) (1 + r∗i ) under the rate cap—and then form the moment condition that equates
the resulting missing-and-non-rationed mass to the excess mass along the interest rate cap. In practice, we �nd that,
at our parameter estimates, no loans should be rationed due to the rate cap, potentially because of the generous
repayment guarantee that the SBA provides. We discuss this empirical result at the end of Section 5.3.
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Table 2: Parameter Estimates

Main Spec. Robust(1) Robust(2) Robust(3)

α σ α σ α σ α σ

Estimate 0.926 3.710 0.937 2.887 0.933 3.108 0.909 3.629
(0.011) (0.853) (0.033) (1.17) (0.016) (1.27) (0.016) (1.17)

# Markets 3 3 6 6
Polynomial Deg. 1 3 1 3

This table reports the estimated parameter values for our main speci�cation (column (1)) and three robustness speci�cations. Standard errors are
provided below the point estimates in parentheses. We use a Nelder-Mead algorithm to �nd the set of parameters that minimizes the di�erence
between observed excess and missing mass in both markets. Standard errors are estimated using the bootstrap. For our robustness estimates
we vary the number of K bins used to categorize market concentration, as well as the degree of the polynomial used in the estimation of the
counterfactual distribution of loan contracts in the absence of the interest rate cap, for both the marginal P (r) and the conditional P (L|r)
distributions. The baseline speci�cation separates counties into 3 bins by their HHI, and uses 1-degree polynomial. Robustness speci�cation 1
uses 3 HHI bins and 3-degree polynomial. Robustness speci�cations 2 and 3 both use 6 HHI bins and use 1- and 3-degree polynomials, respectively.
The point estimates in all speci�cation are similar. The estimated parameters in our main speci�cation imply that in the most concentrated market
(i.e. counties with 2 banks), lenders capture 35% of surplus.

Using the various D̂k, we then select the set of parameters that minimizes the di�erence be-
tween observed excess and missing mass in all markets. Figure 7 overlays the missing mass
region’s boundary, estimated by these parameters, on top of the calculated di�erence in distribu-
tions.

Figure 7: Di�erence in counterfactual and observed (L, r) distribution and estimated boundaries
of missing mass regions for large and small K

This �gure plots the di�erence in density between the observed loan distribution and the counterfactual distribution after dividing the data into
terciles of inverse HHI, K. Excess mass, shown in green, is concentrated along the interest rate threshold. Missing mass, plotted in pink, indicates
where loan contracts would have been located in the absence of the cap. The di�erences in density below and above the interest rate cap are
separately smoothed using a Gaussian low-pass �lter. As predicted by the model, the missing mass is concentrated primarily above the cap and
to the right of the notch. In gray, we overlay the boundaries of the missing mass region, which is determined by the estimated parameters as well
as K.

Table 2 reports the estimates of our two key elasticities. Our baseline speci�cation �nds
α = 0.926 and σ = 3.710. The speci�cation separates counties into 3 bins based on their HHI,
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and uses 1-degree polynomial when estimating the counterfactual distribution of loan contracts
in the absence of the interest rate cap using the procedure described in Section 5.1. We have also
explored alternative robustness speci�cations by varying the number of HHI bins (robustness
exercises 2 and 3 in Table 2 consider 6 bins) and by varying the degree of polynomials (robust-
ness exercises 1 and 3 in Table 2 consider 3-degree polynomials). The estimates of our two key
elasticities are quantitatively very similar across speci�cations.

To interpret our parameter estimates, we demonstrate the implied fraction of total surplus
captured by the lender and how it varies with market concentration. Our results imply that in
the most concentrated market (i.e. counties with 2 banks), lenders capture 35% of surplus. Figure
8 graphs the estimated relationship, as described in Section 3, between market concentration and
the fraction of surplus captured by lenders in a world without interest rate caps.

Figure 9 then represents the corresponding share of surplus that would be captured by lenders
in each U.S. county. As the �gure shows, small business lending is more competitive along the
coasts, especially in the Northeastern states and in California and Washington. Counties have
warmer colors on the map, signaling that lenders capture less than half of the total surplus in
lending. In contrast, market power is greater in the Midwest and in the South, with a majority
of counties colored in blue; this pattern is driven by the fact that there are often few lenders
operating in counties within these regions.

While our model and estimation procedure currently abstracts away from moral hazard, in
Appendix C we calibrate the impact moral hazard would have on our identi�cation strategy and
parameter estimates. We �nd that given the low default and generous guarantee rate in the data,
moral hazard, if it exists, would have only a negligible e�ect on lenders’ decisions in the presence
of the interest rate cap and thus our estimates of α and σ.

We also take note that our estimates imply that only counterfactual loans in a duopoly with
unconstrained interest rates above 9.48% (8.54% for inverse HHI = 7) would have been rationed
under the interest rate caps imposed by the SBA policy. Our �tted counterfactual distribution of
interest rates, generated using observed loans below the cap with the nonparametric �t described
in section 5.1, predicts no loans in this region.

6 Evaluation of SBA Program and Counterfactual Policies

Our counterfactual policy analysis uses the predicted contract distribution and estimated pa-
rameters (α̂, σ̂) found in Section 5 as a starting point to compute the impact of several policies
commonly implemented to address market power. We measure how a government loan guaran-
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Figure 8: Fraction of Surplus captured by Lenders vs. Inverse HHI

K

20%

30%

40%

50%

60%

70%

2 4 6 8 10

The �gure plots the fraction of total surplus that is captured by lenders as a function of market concentration (inverse-HHI) in the absence of a
rate cap. Dotted lines represent a 90% con�dence interval for our estimate.

Figure 9: Share of surplus captured by lenders, average of each U.S. county
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tee program, a uniform interest cap, and an increase in bank competition change the distribution
of contracts, and consequently, the size and division of surplus between borrowers and lenders.
We also analyze the welfare impact of the existing policy — the “notched” interest rate cap — both
with and without the loan guarantee.

6.1 Theoretical Results

In Section 5, we predicted the distribution of contracts, (rG, LG), that would have arisen in a
policy environment that featured a 50% loan guarantee program without any interest rate caps.
In this subsection, we �rst show how we can use this to compute the laissez-faire distribution
of contracts, (rLF , LLF ), that would have appeared without either an interest rate cap or a loan
guarantee. Using this, we calculate the hypothetical distribution of contracts under a wide variety
of commonly pursued government policies.

Proposition 4. Let λ be the fraction of the unpaid loan balance guaranteed by the government in
the case of default, and let δGi = δi + λ(1 − δi) denote the e�ective rate of recovery on defaulted
debt. Let R = 1 + r. The laissez-faire contract can be written as the following function of the loan
terms under a guarantee program:

LLFi = LGi

(
c̃Gi
c̃i

) 1
1−α

, (14)

RLF
i = RG

i

c̃i
c̃Gi
, (15)

where c̃i = ci−(1−pi)δi
pi

and c̃Gi =
ci−(1−pi)δGi

pi
.

The proof is in Appendix A, and the intuition is as follows. The lender selects the loan size to
maximize the sum of the borrower and lender surplus. For a given contract size and interest rate,
a loan guarantee leads to a negative government surplus and to a higher expected lender surplus;
however, the former does not factor into the equilibrium loan size. Therefore, when compared
with LGi , the laissez-faire setting features a reduced loan size. Additionally, the interest rate
increases in the laissez-faire setting, as the lender must be compensated more when the project
is successful to cover the additional losses incurred when the project fails.

Using the laissez-faire distribution of contracts, we can directly apply the results in Section
3 to compute the distribution of contracts under a uniform interest rate cap, (RUC

i , LUCi ), and
under a “notched” interest rate cap, (RNC

i , LNCi ).

The last counterfactual policy we analyze is one in which the government incentivizes an
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increase in market competition. Let γ denote the rise in inverse-HHI, so that (1+γ) = K′

K
, where

K’ denotes the new inverse-HHI. The equilibrium loan size under this policy, LIC , is identical to
LLF , as the same loan size continues to maximize the sum of borrower and lender surplus. The
equilibrium interest rate will decrease, re�ecting the lower lender markup associated with a drop
in market share. Speci�cally, we have that RICi

RLFi
= µIC

µ
, where µIC =

1+ασ(1− 1
K′ )

α+ασ(1− 1
K′ )

.

To evaluate the di�erent policies, we compute the expected borrower surplus, lender surplus,
and government surplus for each loan that is not rationed using the following formulas:

BSi = pi(ziL
α
i − (1 + ri))

LSi = Li(pi(1 + ri) + (1− pi)(δi + λ(1− δi))− ci)

GSi = −(1− pi)λ(1− δi)

Loans that become rationed contribute zero surplus. Using our prediction for the probability
distribution of (Ri, Li) in the di�erent counterfactual policy environments, we can combine the
contract-speci�c expected surpluses into economy-wide aggregates.

6.2 Recovering Borrower Characteristics

Our identi�cation strategy for the two key model parameters (α and σ) leverages on the bunch-
ing of loans along the size-dependent interest rate cap, as detailed in Section 5, and our strategy
does not require us to know the characteristics of individual borrowers (probability of default, pi,
recovery rate δi, productivity zi, and each bank’s cost of lending to the borrower ci) that give rise
to the loan terms we observe in the data.

In this section, we evaluate policy counterfactuals, some of which involve changing the level of
repayment guarantees provided by the SBA, essentially changing the recovery rate δi perceived
by the bank in case of default. Conducting these counterfactuals thus requires us to recover
borrowing characteristics from the observed loan terms and the level of bank competition in the
market. We perform this estimation using information on loan repayment, while maintaining full
�exibility in the correlation structure between these parameters. We analyze the loan-level repay-
ment data for contracts lying strictly below the interest rate cap. We split U.S. counties into three
equally sized bins based on the inverse-HHI, and within each bin, we use a logistic regression to
predict loan charge-o� in the �rst �ve years of the loan using loan terms (ri, Li) as covariates.
We then compute the repayment probability pi by annualizing the estimated probability of full
repayment from the logistic model. Next, we need an estimate of the recovery rate, δi. To gener-
ate this, we again split U.S. counties into three equally sized bins and �lter to all loans below the
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Figure 10: p, δ as functions of (r, L) for smallest K group
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These plots show the annualized full repayment rate (left) and recovery rate (right) as functions of the interest rate for two di�erent loan sizes.
These plots are created using data from the most concentrated market (smallest inverse-HHI)

interest rate cap that charged o�. We then regress the fraction of the defaulted balance recovered
from the borrower (ignoring the loan guarantee money received from the government) on the
loan terms (ri, Li). Using the �tted coe�cients, we estimate δi for all loans. Figure 10 displays
how the estimated parameters depend on the loan terms for a given level of market competition.
As expected, the probability of full repayment and the recovery rate decrease in the interest rate
of the loan. For the same interest rate, larger loans have lower default risk and higher expected
recovery rates.

To compute ci, we plug the estimates of α, σ, pi, δi, and the observed RG
i into the equation

derived in Proposition 1 for the equilibrium interest rate. Solving that equation for ci, we get:

ci = piR
G
i (
α + ασ(1− 1

K
)

1 + ασ(1− 1
K

)
) + (1− pi)(δi + λ(1− δi))

Finally, we use the equilibrium loan size derived in Proposition 1 to solve for zi.

zi =
ci − (1− pi)(δi + λ(1− δi))

piα
(LGi )

1
1−α

Employing these loan-speci�c parameter estimates, we can evaluate the government policies
as described in the previous subsection.
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Figure 11: CDF of Model Parameters
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The �rst row of �gures plots the CDF of the bank’s individual cost parameter, ci (left panel), the borrower’s annualized repayment probability,
pi (middle panel), and the expected recovery rate conditional on default, δi (right panel), for loans in counties with high market concentration
(inverse HHI = 2.15). The second row plots these distributions for loans with low market concentration (inverse HHI = 7.08). For interpretation
purposes, a ci of 1 implies that a bank is indi�erent between lending or not as long as the expected return from the loan is equivalent to the
prime rate. It may seem surprising then to see a sizable fraction of banks have a value ci less than 1. However, banks receive other bene�ts in
the form of closing costs and the possibility for late payment fees levied on borrowers when they o�er loans to borrowers. Finally, we see that
the banks operating in environments with less competition have lower costs, explaining their higher market share.
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Figure 12: Distribution of (r, L) contracts under various counterfactual scenarios
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These six plots show the predicted distribution of r and L in concentrated markets (inverse HHI = 2.15) under the laissez-faire baseline (top left),
a uniform interest rate cap of 5.5% (top center), the existing interest rate cap “notch” structure, without the guarantee (top right), a 50% guarantee
with no interest rate cap (bottom left), a 20% increase in market competition (bottom center), and the existing SBA policy (bottom right).

6.3 Empirical Results

For every laissez-faire contract (r∗, L∗), we compute the counterfactual value of r and L under
the following policy interventions: 1) a uniform interest rate cap of 5.5%; 2) the “notched” interest
rate cap found in the SBA policy, without the loan guarantee; 3) a guarantee-based subsidy to the
lender that reimburses losses at a 50% rate; 4) a 20% increase in market competition (K); and 5)
the SBA policy, which features a “notched” interest rate cap and a 50% loan guarantee. Figure 12
shows the resulting loan-interest rate distributions in a laissez-faire environment and under each
scenario.

Table 3 reports these policies’ impact on the average values of r and L in the distribution as
well as on total surplus, lender surplus, and borrower surplus relative to the laissez-faire baseline.
The table also reports the percentage of laissez-faire loans that are potentially rationed, or lost,
under the counterfactual scenarios with interest rate cap. When interpreting the change in total
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surplus for the counterfactual policy of expanding market competition, we recognize that market
competition is an endogenous outcome. Changing this outcome likely incurs costs, which we do
not estimate in this analysis. Instead, we speak to how adjusting the level of market competition
alters the split between borrower and lender surplus. We repeat the exercise for both a concen-
trated market (inverse HHI = 2.15) and a competitive market (inverse HHI = 7.08) to show the
nonlinear policy response across markets of di�erent sizes.

In a laissez-faire environment with concentrated markets, we �nd that lenders capture 36% of
the total surplus, while the remaining 64% goes to borrowers. There is some reduction in total
surplus due to the distortions induced in scenarios 2, 3, 4, and 6—loan size deviates from its ef-
�cient size under both the rate caps and the guarantee, generating ine�ciencies. Total surplus
remains constant when K increases (scenario 5), since increasing competition will only impact
the division, but not the size, of surplus. While both interest rate cap policies boost borrower
surplus for a�ected, but non-rationed borrowers, they negatively impact borrowers who are ra-
tioned. When the rate cap is set too low, this rationing can be so extensive that the net e�ect
is less borrower surplus. The guarantee policy lowers costs for lenders, which in turn both in-
creases loan size and decreases interest rates. However, the cost of the guarantee subsidy must
be born by the government and therefore reduces total surplus. Additionally, the bene�ts of this
subsidy are split between the lender and the borrower, because the lender does not entirely “pass
through” the reduction in costs to lower interest rates.

Next, we analyze the impacts of changing the policy variables in a continuous fashion. Fig-
ure 13 demonstrates how loan guarantee generosity in�uences surpluses. We see that borrower
and lender surplus increase monotonically in the size of the guarantee; however, total surplus
decreases slightly due to the costs imposed on the government. Furthermore, we see that less
than $0.65 of each government dollar spent �ows to the borrower. This amount decreases in the
generosity of the guarantee program, as the amount of deadweight loss as a ratio of government
expenditure increases to over $0.02 for larger guarantee programs. These results indicate that
if the government’s goal is to subsidize borrowers, then a loan guarantee program is relatively
ine�cient due to both the deadweight loss and due to the lenders capturing a signi�cant share
of the surplus.

Figure 14 shows the e�ects of changing the uniform rate cap threshold. In the left panel, we
see that imposing a binding rate cap reduces lender and total surplus. For modestly sized rate
caps, borrower surplus increases, as lower borrowing costs’ positive impact dominates the e�ect
of rationing; however, for stringent rate caps, borrower surplus diminishes due to substantial
rationing. The right panel shows that borrowers, whose loans are not rationed, experience an
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Table 3: Counterfactual Scenarios Calculated for Small and Large K Markets

inverse HHI = 2.15
LF Cap Notch Guar Inc. K SBA Policy

AvgR 3.03 2.97 2.99 2.79 2.79 2.80
AvgL 88223.30 88656.96 88305.93 90635.43 88223.30 89202.66

BS/BS* 1.00 1.00 1.01 1.02 1.04 1.01
LS/LS* 1.00 0.99 0.98 1.02 0.91 1.01

GS 0.00 0.00 0.00 -181.29 0.00 -175.77
TS/TS* 1.00 1.00 1.00 1.00 1.00 0.98

BS/(BS+LS) 0.66 0.67 0.67 0.66 0.69 0.66
Rationed (%) 0.00 0.12 0.00 0.00 0.00 0.00

inverse HHI = 7.08
LF Cap Notch Guar IncK SBA Policy

AvgR 3.44 3.32 3.37 3.15 3.39 3.11
AvgL 92009.53 92790.55 91837.35 95050.63 92009.53 93007.68

BS/BS* 1.00 1.00 1.01 1.03 1.01 1.01
LS/LS* 1.00 0.97 0.96 1.03 0.98 1.01

GS 0.00 0.00 0.00 -230.95 0.00 -218.79
TS/TS* 1.00 0.99 1.00 1.00 1.00 0.98

BS/(BS+LS) 0.74 0.74 0.75 0.74 0.74 0.74
Rationed (%) 0.00 0.60 0.07 0.00 0.00 0.00

This table reports how counterfactual policies impact average values of r and L in the distribution and total surplus, lender surplus, borrower
surplus, and government surplus relative to the laissez-faire baseline. We analyze 1) the laissez-faire baseline; 2) a uniform interest rate cap of
5.5%; 3) the “notched” interest rate cap used by the SBA, but without the guarantee-based subsidy; 4) a 50% government loan guarantee; 5) an
20% rise in market competition; and 6) the policy used by the SBA, including the “notched” interest rate cap and a 50% guarantee-based subsidy
to the lender. The table also reports the portion of laissez-faire loans that are rationed, or lost, under each counterfactual scenario. We repeat the
exercise for both a concentrated market (inverse HHI = 2.15) and a competitive market (inverse HHI = 7.08) to show the nonlinear policy response
across markets of di�erent sizes.
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Figure 13: Changing the size of the loan guarantee
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The plot on the left displays the ratio of borrower surplus, lender surplus, and total surplus in a concentrated market (inverse HHI = 2.15) with a
loan guarantee to the corresponding surpluses in a laissez-faire environment. The plot on the right shows in green (on the left axis) the increase
in borrower surplus per dollar spent through the government’s guarantee subsidy. In orange (on the right axis), we see the amount of deadweight
loss per dollar of government spending.

increase in surplus due to lower borrowing costs. Nevertheless, with modestly sized rate caps,
this bene�t is small due to the tempering e�ect of ine�cient loan sizes.

In Figure 15, we consider the impact of policies that combine a uniform rate cap and a loan
guarantee. Because it decreases the e�ective cost of lending, a loan guarantee can reduce the rate
of rationing in the presence of an interest rate cap. In the left panel, we show that policy makers
can substantially increase borrower surplus through the combination of a loan guarantee and
a uniform rate cap. As the size of the loan guarantee increases, rationing becomes less severe,
and we see that there exists an interior solution for the rate cap’s optimal size that maximizes
borrower surplus for a given guarantee percentage. In the right panel, we show that coupling
these two policies can be an e�cient method for governments to subsidize borrowers. With
a 20% loan guarantee and a uniform rate cap from 3%–4% percent, each dollar of government
expenditure increases borrower surplus by $1.53. This is more than double the pass-through rate
of the SBA’s current policy.

7 Conclusion

In this paper we propose a novel, two-dimensional bunching estimator for bank market power
by exploiting the bunching of lending contracts given notches in regulatory interest rate caps. We
methodologically contribute to the “bunching” literature (Kleven (2016)) by deriving a bunching
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Figure 14: Changing the size of a uniform rate cap
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The plot on the left displays the ratio of borrower surplus, lender surplus, and total surplus in a concentrated market (inverse HHI = 2.15) under
a uniform interest cap to the corresponding surpluses in a laissez-faire environment. The plot on the right shows in green (on the left axis) the
percent of loans that are not rationed. Orange (using the right axis) shows the ratio of the borrower surplus under a rate cap to the laissez-faire
surplus, focusing exclusively on loans that remain unrationed.

Figure 15: Loan guarantee and uniform rate cap
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The left plot displays the increase in the average borrower surplus in a concentrated market (inverse HHI = 2.15) as a function of the size of the
loan guarantee and the interest rate cap. On the right, we see the increase in borrower surplus per dollar spent by the government. Rate caps are
evaluated in 50 basis point increments.

40



estimator for settings in which decision makers have multiple choice variables. We apply the
estimator to loans made through the SBA, a federal agency that provides implicit loan guarantees.
We �nd substantial market power in this setting: on average, banks capture 27–36% of surplus
in laissez-faire lending relationships and a similar percentage of the additional value created by
loan guarantees. We perform a wide range of policy counterfactuals and �nd the combination
of a 20% loan guarantee and a uniform interest rate cap of 3–4% more than doubles the pass-
through rate from government dollars to borrower surplus compared with the current SBA policy.
Applications of our two-dimensional bunching estimator in other empirical contexts may be a
fruitful avenue for future research.
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A Proofs of Propositions

Proof of Proposition 1: The bank’s maximization problem is:

max
r,L

[pi (1 + r) + (1− pi) δi − ci]L︸ ︷︷ ︸
expected pro�t conditioninal

on contract being accepted

× vσik∑K
k′=1 v

σ
ik′︸ ︷︷ ︸

choice probability

s.t. vik = pi (ziL
α − (1 + r)L)

Let c̃i = ci−(1−pi)δi
pi

,and let R = (1 + r). The maximization problem simpli�es to

max
R,L

(R− c̃i)L
vσik∑
j v

σ
ij

We take the �rst-order conditions with respect to R and L respectively, and denote Rik and Lik
as the optimal choices:

{R} Lik
vσik∑
j v
σ
ij

+ (Rik − c̃i)Likσvσ−1
ik

[
(
∑
j v
σ
ij)−vσik

(
∑
j v
σ
ij)

2

]
∂vik
∂R

= 0

{L} vσik∑
j v
σ
ij

+ Likσv
σ−1
ik

[
(
∑
j v
σ
ij)−vσik

(
∑
j v
σ
ij)

2

]
∂vik
∂L

= 0

⇐⇒

vik = (Rik − c̃ik)σ (1− 1/K) piLik

vik + σ (1− 1/K) (piziαL
α
ik − piRikLik) = 0

Substitute the �rst equation into the second to eliminate vik and then re-arrange, we obtain

L1−α
ik =

piαzi
c̃ipi

=
piαzi

ci − (1− pi)δi
,

which shows (10). To show (11), substitute the de�nition of vik into the �rst-order condition with
respect to R and obtain

ziL
α−1
ik −Rik = (Rik − c̃i)σ (1− 1/K)

Using (10) to substitute for Lα−1
ik , we obtain

c̃i − αRik = α (Rik − c̃i)σ (1− 1/K)

A1



Re-arrange, we get
Rik (α + ασ (1− sik)) = c̃i (1 + ασ (1− 1/K))

Hence we obtain the pro�t margin as

µik ≡
Rik

c̃i
− 1 =

1− α
α (1 + σ (1− 1/K))

. (A1)

To show the second part of the proposition, take �rst-order approximation of µik with respect
to 1/K , around 1/K = 0:

µ ≈ 1− α
α (1 + σ)

+
(1− α)σ

α (1 + σ)2 ×HHI,

as desired.

Proof of Proposition 2: Let c̃i ≡ ci−(1−pi)δi
pi

. The lender’s unconstrained pro�t maximization
is given by:

max
R,L

(R− c̃i)L
vσi∑
j v

σ
ij

First-order condition (see proof of Proposition 1):

{R} ziL
α −RL = σ (1− 1/K) (R− c̃i)L

{L} ziL
α −RL = σ (1− 1/K) (RL− αziLα)

The FOC wrt R implies that the lender’s surplus relative to the borrower’s surplus is 1
σ(1−1/K)

; in
other words, the lender captures 1

1+σ(1−1/K)
fraction of total surplus, and

1

1 + σ (1− 1/K)

(
ziL

α−1

c̃i
− 1

)
=

(
R

c̃i
− 1

)
(A2)

Using the FOC wrt L, we get

ziL
α−1 (1 + ασ (1− 1/K)) = R (1 + σ (1− 1/K))

L =

(
R (1 + σ (1− 1/K))

zi (1 + ασ (1− 1/K))

) 1
α−1

(A3)
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Solving the unconstrained problem,

c̃iL = αziL
α =⇒ L∗ =

(
αzi
c̃i

) 1
1−α

1

1 + σ (1− 1/K)

1− α
α

=

(
R

c̃i
− 1

)
=⇒ R∗ =

(
1 + ασ (1− 1/K)

α + ασ (1− 1/K)

)
c̃i

Now suppose R is given exogenously but L is optimally chosen; we want to express (A3) in
terms of the unconstrained L∗ and exogenous R.

L =

(
R (1 + σ (1− 1/K))

zi (1 + ασ (1− 1/K))

) 1
α−1

(
(L∗)1−α = αzi/c̃i =⇒

)
=

(
αR (1 + σ (1− 1/K))

(L∗)1−α c̃i (1 + ασ (1− 1/K))

) 1
α−1

(c̃i (1 + ασ (1− 1/K)) = R∗ (α + ασ (1− 1/K)) =⇒ ) =

(
R

(L∗)1−αR∗

) 1
α−1

= L∗
(
R

R∗

) 1
α−1

Now suppose L is exogenously given but R is chosen optimally; we express (A2) in terms of
the unconstrained R∗ and L.

R

c̃i
=

1

1 + σ (1− 1/K)

(
ziL

α−1

c̃i
+ σ (1− 1/K)

)
(
(L∗)1−α = αzi/c̃i =⇒

)
=

1

1 + σ (1− 1/K)

(
1

α

(
L∗

L

)1−α

+ σ (1− 1/K)

)

Using R∗ =
(

1+ασ(1−1/k)
α+ασ(1−1/k)

)
c̃i, we get

R = R∗
1

1 + σ (1− 1/K)

(
1

α

(
L∗

L

)1−α

+ σ (1− 1/k)

)/(
1 + ασ (1− 1/K)

α + ασ (1− 1/K)

)

R = R∗
(
L∗

L

)1−α
+ ασ (1− 1/K)

1 + ασ (1− 1/K)

Proof of Proposition 3: Consider an unconstrained loan contract (R∗, L∗) that is infeasible
under the notched rate cap. We separately consider two scenarios. First, imagine R∗ > R̄H . This
loan is rationed if the bank’s expected pro�t from o�ering any feasible contract is negative. This
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is the case if:

(piR̄
H + (1− pi)δ − ci)L < 0

Substituting c̃i ≡ cik−(1−pi)δi
pi

, and recalling that 1+ασ(1−1/K)
α+ασ(1−1/K)

c̃i = R∗, we get that infeasible
loans become rationed if:

R̄H < R∗
α + ασ(1− 1/K)

1 + ασ(1− 1/K)

Assuming the loan is not rationed, by the convexity of the bank’s optimization problem, the
bank will o�er either a contract at the upper rate cap, with R = R̄Hor with R = R̄L. Label the
latter RLand the former RH . From Proposition 2, the corresponding contracts will be:

(RL, LL) =

(
R̄L, L∗

(
R̄L

R∗

) 1
α−1

)

(RH , LH) =

(
R̄H ,min

{
L̄, L∗

(
R̄H

R∗

) 1
α−1

} )

Note that L∗
(
R̄H

R∗

) 1
α−1 could be larger than L̄, in which case the maximum feasible loan size

the bank could o�er with interest rate R̄H is L̄.

Second, imagine R̄L < R∗ < R̄H ,and L∗ > L̄. By convexity, this bank will either o�er a
contract along the “vertical part” of the rate cap (i.e. with L = L̄) or along the lower rate cap
(with R = R̄L). Again, Proposition 2 gives the contract under either scenario:

(RL, LL) =

(
R̄L, L∗

(
R̄L

R∗

) 1
α−1

)

(RH , LH) =

(
min

{
R̄H , R∗

(
L∗

L̄

)1−α
+ ασ (1− 1/K)

1 + ασ (1− 1/K)

}
, L̄

)

To choose between these two contracts, the bank computes its expected pro�t from each and
o�ers the contract (RH , LH) if:
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LH
(
RH −R∗α + ασ(1− 1/K)

1 + ασ(1− 1/K)

)
qik(R

H , LH) ≥ LL
(
RL −R∗α + ασ(1− 1/K)

1 + ασ(1− 1/K)

)
qik(R

L, LL)

(A4)

The choice probability, qik, depends on the contracts o�ered by all banks within the market.
In particular:

qik(Rik, Lik) =
vσik∑K
k′=1 v

σ
ik′︸ ︷︷ ︸

choice probability

s.t. vik = pi (ziL
α
ik −RikLik)

Note that we can back out a borrower’s value of zi using the equilibrium loan size:

zi =
L∗

1−α
i c̃i
α

=
L∗

1−α
i R∗i
α

· 1 + ασ(1− 1/K)

α + ασ(1− 1/K)

Therefore, the probability a bank is chosen by a borrower is given by:

qik(Rik, Lik) =

(
L∗

1−α
i R∗i
α

· 1+ασ(1−1/K)
α+ασ(1−1/K)

Lαik −Rα
ikLik

)σ
∑K

k′=1

(
L∗

1−α
i R∗i
α

· 1+ασ(1−1/K)
α+ασ(1−1/K)

Lαik′ −Rα
ik′Lik′

)σ
We solve for a symmetric Nash equilibrium in which all banks pursue the same strategy by

o�ering either (RH , LH) or (RL, LL). First, we check whether all banks o�ering (RH , LH) is a
pure strategy Nash equilibrium. To do this, we assume that the other (K − 1) banks are o�ering
(RH , LH), and then we evaluate equation (16). If satis�ed, then (RH , LH) is a pure strategy Nash
equilibrium. Next, we undertake the same procedure to test whether (RL, LL) is a pure strategy
Nash equilibrium. This will be the case if the right-hand side of equation (16) is at least as big as
the left-hand side.

There are three possibilities. First, if there is only one pure strategy Nash equilibrium, then
all banks will o�er that contract. Second, if both all banks o�ering (RH , LH) and all banks of-
fering (RL, LL) are pure strategy Nash equilibriums, then we assume that banks will select the
bank-optimal equilibrium out of these two options. Finally, if there is no pure strategy Nash
equilibrium, then we solve for the symmetric mixed strategy equilibriums in which all banks
o�er (RH , LH) with probability λ and (RL, LL) with probability 1 − λ. Numerical simulations
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con�rm that this �nal scenario does not occur for realistic choices of our parameters.

P roof of Proposition 4: Let c̃i ≡ ci−(1−pi)δi
pi

, and let c̃Gi ≡
ci−(1−pi)δGi

pi
. In Proposition 1, we

showed that LLFi = (αzi
c̃i

)
1

1−α , and that RLF
i = c̃i

(
1+ασ(1−1/K)
α+ασ(1−1/K)

)
. We now must compute the

contract o�ered in a policy environment with a loan guarantee of size λ. The loan guarantee
increases the fraction of the loan balance recovered by the lender in the case of default from δi

in a laissez-faire environment, to δGi = δi + λ(1 − δi). The new pro�t maximizing (RG
i , L

G
i ) is

given by:
max
R,L

(
piR + (1− pi)δGi − ci

)
L

vσi∑
j v

σ
ij

First-order condition:

{R} zLα −RL = σ (1− 1/K)
(
R− c̃Gi

)
L

{L} zLα −RL = σ (1− 1/K) (RL− αziLα)

These equations are identical to those written in the �rst part of the proof of Proposition 2,
with c̃Gi in place of c̃i. Repeating the steps from that proof, we get LGi = (αzi

c̃Gi
)

1
1−α , and RLF

i =

c̃Gi

(
1+ασ(1−1/K)
α+ασ(1−1/K)

)
. Taking the ratio of the optimal contracts under the two policy environments

provides the desired results.

A6



B SBA Express Loan Program

The SBA Loan Express program was established in 1995 (under the original name FA$TTRAK)
and provides a 50% loan guarantee on loans up to $350,000. It is the second most popular SBA
lending program, behind the 7(a) guarantee program.

The primary di�erences between the Express Loan Program and the SBA’s �agship 7(a) loan
program is in the maximum loan amounts, which are lower in the Express Loan Program, the
prime interest rates, which are higher in the Express program, and the SBA review time, which
is typically shorter for Express loans. The documentation necessary for the SBA Express loan is
less burdensome compared to the standard SBA 7(a) loans, at the expense of higher interest rates.

There are two types of SBA Express loans. The �rst type of loans is for businesses that export
goods, and the second type is for all other businesses. Lenders can approve a loan or line of credit
up to $350,000 with an SBA Express loan, while an Export Express Loan can extend to $500,000.
The SBA will respond to an Express Loan application within 36 hours, while the eligibility review
for an Export Express Loan will take less than 24 hours.

Loan type and collateral determine the length of repayment. The (expected) life of the col-
lateral is used to determine the repayment length: for example, using real estate for collateral
generally leads to a longer repayment period than does using equipment for collateral. More
speci�cally, the maximum SBA Express loan terms are up to 25 years for real estate term loans;
up to ten years for leasehold improvement term loans; between 10 and 25 years for equipment,
�xtures, or furniture term loans; up to ten years for inventory or working capital term loans; and
up to seven years for revolving lines of credit.

C Moral Hazard’s Impact on Identi�cation and Parameter

Estimates

While highlighting the consequences of imperfect competition on small business lending, our
model abstracts away from asymmetric information. We model the probability of project failure,
(1−pi), as a deterministic, observable borrower characteristic. Moral hazard would instead imply
that failure is an increasing function of loan size and interest rate—that is, p′i(L(1 + r)) < 0.13

Our identi�cation strategy depends on measuring distortions to (r, L) contracts while holding
13This may occur via a liquidity channel, where an increase in loan size will increase monthly payments and thus

the probability of default. It may also distort borrower incentives and lead to a higher default rate via the strategic
default channel.
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borrower characteristics constant. If movements in L and r simultaneously cause changes in the
marginal cost of lending, this may bias our estimates. For example, banks may be less likely to
enlarge constrained loans if doing so increases the probability of default, and thus costs. Banks
may instead be more likely to scale back loan size to L̄. This could extend the boundaries of our
missing mass region, SK , and in�ate our estimates of α and σ.14 Conversely, if increasing r has
an even larger positive e�ect on default, banks may be less likely to scale back loans to L̄, and
this will bias our estimates downward.

To gauge the extent of this bias, we combine moral hazard estimates from the literature with
our own estimates of default, costs, and changes in loan size. We estimate the implied change
in lender surplus due to moral hazard for the marginal constrained loans that would otherwise
exist on the border of the missing mass region. We compare this to the estimated overall lender
surplus change that occurs when these loans are “constrained” by the interest rate cap and moved
to L̄. Moral hazard’s impact on lender surplus is more than two orders of magnitude smaller than
the typical impact of the cap. This is likely due to the very low default rates and generous loan
guarantees observed in our data, as both drive down the bene�ts accrued by the bank when a
loan becomes less risky.

In general, moral hazard estimates from the literature in other consumer credit markets, such
as mortgages, credit cards, payday lending, and auto lending, focus on subprime, high-risk bor-
rowers.15 These estimates are not applicable to our setting, which has a very low average default
rate as well as a government guarantee. We instead use IV estimates from a study of government-
guaranteed small business loans (Saito and Tsuruta (2018)), that �nds that a 1% increase in loan
volume leads to a 0.1525% increase in the probability of default.16

Given this estimate, we calculate the predicted changes in default rates, costs, and, ultimately,
lender surplus for loans that are scaled back to L̄ from the border of the missing mass region SK .17

We compare the change in lender surplus that comes from scaling back loan size, holding default
risk constant, to the change in lender surplus that comes from the moral hazard-induced change
in default risk. The results are shown in Table A.1, where we run the scenario for a range of moral
hazard elasticities. Scaling back loan sizes in this region—which is the basis of our identi�cation
strategy—generates a substantial -11% change in lender surplus. In comparison, the additional

14See Figure A.5 for a demonstration of how the missing mass regions’ boundaries relate to the parameter values.
15For example, Noel and Ganong (2020) estimate that for struggling mortgage borrowers, principal reduction alone

has no e�ect on the probability of default. However, a “one percent payment reduction reduces default rates by about
one percent”.

16This paper studies loans backed by both a 100% and 80% government guarantee. It �nds a smaller moral hazard
e�ect for loans made under the less generous guarantee. This suggests that moral hazard may have an even smaller
e�ect in our setting, where the government guarantee is 50%.

17The details of the calculations can be found in the subsection below.
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Table A.1: Absolute and relative changes in lender surplus from loan size reduction and moral
hazard

%∆LS, no MH %∆LS, from MH Ratio

υ(1−p),L = .05% -11.09% .01% 824
υ(1−p),L = .15% -11.09% .04% 274
υ(1−p),L = .25% -11.09% .07% 164

This table shows calculated changes in lender surplus in the constrained region for several moral hazard estimates. The �rst column calculates the
change in lender surplus for constrained loans, without moral hazard. The second column calculates the change in lender surplus for constrained
loans coming from the moral hazard e�ect. The third column shows the ratio of these two e�ects. The e�ect of moral hazard is negligible,
especially in comparison to the e�ect of the scale-back in loan size. Each row repeats this exercise for a di�erent etimate of moral hazard
elasticity—i.e. the percentage change in default given a percentage change in loan size. The second row is our preferred speci�cation, as it uses an
empirical estimate from the literature. As moral hazard becomes more severe, the change in lender surplus from moral hazard increases slightly,
but still remains very small.

change in lender surplus potentially stemming from moral hazard is only .01–.07%. This suggests
that moral hazard, if it exists, would have only a negligible e�ect on lenders’ decisions in the
presence of the interest rate cap and thus on our estimates of α and σ.

It is important to note that the above exercise only considers moral hazard’s e�ect on the loan
size dimension, not the interest rate dimension. When loan size is scaled back in the region SK ,
the interest rates on these contracts increase. Under a model of moral hazard in which p′i(L(1 +

r)) < 0, this would elevate the probability of project failure and counteract the opposing e�ect
of scaling back loan size. This would push the estimated e�ect of moral hazard on lender surplus
in Table A.1 even closer to zero.

Finally, the potential presence of moral hazard motivates our use of both within and across-
market moments for identi�cation. If moral hazard has similar consequences in markets of vary-
ing size K , then cross-market identi�cation will “di�erence out” this common e�ect. The re-
maining variation in distortions across K will be caused by the competition mechanism that we
highlight in our model.

Moral Hazard Calculation Details

Here we outline the details of the moral hazard calculation.

• Using the estimated missing mass boundaries, we �rst calculate the average percentage
change in loan size for loans within the constrained region. This involves calculating the
di�erence between the counterfactual loan size in a laissez-faire environment versus the
constrained loan size at L̄ for each contract.
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• Next, we multiply this percentage change in loan size by the elasticity of moral hazard.
This gives us a predicted percentage change in default rates. Using observed default rates,
(1 − pi), we then calculate the new predicted default rate, (1 − p′i), for loans within the
region after they become constrained at the notch.

• We calculate marginal costs for constrained loans both with and without moral hazard
using the formula: ci = piRi(

α+ασ(1− 1
K

)

1+ασ(1− 1
K

)
) + (1 − pi)(δi + λ(1 − δi)). We adopt the same

values for the recovery rate and guarantee rate as in the counterfactual section.

• Finally, we calculate lender surplus for loans in the missing mass region under three sce-
narios: 1) in an environment featuring unconstrained loan terms with observed default
rates, 2) under the interest rate cap with the same observed default rates, and 3) under the
interest rate cap with default rates adjusted for moral hazard. This uses the lender surplus
equation: LSi = Li(pi(1 + ri) + (1− pi)(δi + λ(1− δi))− ci).

D Validation of the Estimation Procedure in Simulated En-

vironments

Recovering the counterfactual distribution in our analysis has two key di�erences when com-
pared with traditional bunching estimators. First, the SBA Express Loan Program’s interest rate
cap is a non-trivial function of loan size. Both empirically and theoretically, this leads to bunch-
ing mass occurring along a two dimensional notch, rather than a one dimensional space as in
the current bunching literature. Second, because bunching in our setting is caused by a binding
policy ceiling, rather than a policy-induced kink or notch in an agent’s budget set, we do not
observe any probability mass on the “other side” of our notch. This causes us to need to use ex-
trapolation, rather than interpolation, to uncover the counterfactual distribution of loan contracts
in the absence of a rate cap. These two challenges raise questions about whether our approach
can successfully recover the counterfactual distribution of loan contracts in the absence of an
interest rate cap. In this section, we show via simulation that we can successfully estimate the
counterfactual distribution under di�erent data generating processes.

Uniform Distribution: In our �rst simulation exercise, we assume that, in the absence of a
rate cap, loan contracts (r, L) are drawn from a uniform distribution. We randomly draw N =

139507 observations (matching the size of our real-world sample) from this distribution, and call
the result our simulated counterfactual distribution. Some of these loans would be infeasible
under the SBA Express Loan Program interest rate cap. For these loans, we map them to the
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interest rate cap as described by the formulas in Proposition 3, with α = 0.926 and σ = 3.710.
This gives us our simulated observed distribution of loan contracts. In the last step, we apply
the methodology described in Section 5 to obtain an estimate of the simulated counterfactual
distribution of loan contracts. Figure A.1 displays the results of this simulation. We see that the
estimated counterfactual distribution obtained from this procedure closely matches the simulated
counterfactual distribution. This provides us with comfort in using the approach described in
Section 5 to estimate the unknown counterfactual distribution in our real data.

Figure A.1: Uniform simulation results

The leftmost �gure plots the density of loan contracts that are simulated from a uniform distribution. The middle �gure takes all loan contracts
from the left �gure that would be infeasible under the SBA interest rate cap and moves those loans to the interest rate cap as discussed in
Proposition 3. Using the middle �gure, we perform the estimation procedure as discussed in Section 5. The result of this estimation procedure
delivers the right �gure, which represents the estimated counterfactual distribution of loan contracts.

Lognormal Distribution: In our second simulation exercise, we consider a more elaborate
data generating process. In particular, we assume loan contracts, (r, L) are drawn from a log-
normal distribution with mean and covariance matrix matching the observed loans in our real
dataset. We again draw N = 139507 observations from this distribution, and call the result our
simulated counterfactual distribution. We repeat the steps taken above to obtain our simulated
observed distribution and our estimate of the simulated counterfactual distribution. Figure A.2
displays the results of this simulation. Once again, we see that the estimated counterfactual dis-
tribution obtained from this procedure closely matches the simulated counterfactual distribution.
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Figure A.2: Lognormal simulation results

The leftmost �gure plots the density of loan contracts that are simulated from a lognormal distribution. The middle �gure takes all loan contracts
from the left �gure that would be infeasible under the SBA interest rate cap and moves those loans to the interest rate cap as discussed in
Proposition 3. Using the middle �gure, we perform the estimation procedure as discussed in Section 5. The result of this estimation procedure
delivers the right �gure, which represents the estimated counterfactual distribution of loan contracts.

E Additional Figures

Figure A.3: Observed Marginal Distribution of Interest Rates
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These plots demonstrate the extent of round number bunching in the observed distribution of interest rates. We observe substantial jumps in the
density and CDF plots, whenever the interest rate is a multiple of 100 basis points, 50 basis points, or 25 basis points.
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Figure A.4: Observed vs. Estimated Marginal Distribution of Interest Rates
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This �gure plots the estimated (in blue) and observed (in black) marginal CDF of interest rates. The estimated CDF is created by �tting the model
P (R ≤ r) = eη(r)

1+eη(r)
using nonlinear least squares where the linear predictor, η(r), is given by η(r) = P (r) + δ1br/0.01c+ δ2br/0.005c+

δ3br/0.0025c. The �oor function accounts for the visible “spikes” occurring in the distribution at integer interest rates and at multiples of 50
basis points and 25 basis points.P (r)is a polynomial in r.
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Figure A.5: Variation in missing mass regions generated by changes in σ, α, and K .
These plots demonstrate how the boundaries of the missing mass regions vary with the parameters σ and α, as well as with the number of banks
in the market, K . Further, these plots visualize how the empirical shape and size of the missing mass regions allows us to identify and estimate
the model parameters, both within and across markets of di�erent concentrations. In general, a larger missing mass region is associated with
higher values of σ and α. Intuitively, this is because for a given loan size, higher values of σ and α are associated with the bank being able to
charge a lower markup in the laissez-faire environment. Under the notched rate cap, this thin pro�t margin forces banks to “scale back” (i.e.
decreaseL and potentially increase r) a larger portion of loans rather than pushing them out to the lower cap (hence increasingL and decreasing
r). A similar phenomenon occurs asK increases—with more banks in the market, the LF pro�t margin shrinks for a given loan. This means more
loans are forced to scale back under the rate cap, creating a larger missing mass region.
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